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1 .O SUMMARY 

The development of an advanced supersonic panel method is described in detail. The 
basic integral equations of linearized supersonic theory are derived with a discussion on 
boundary conditions providing uniqueness of the solution. Because of the success of the 
method of Johnson and Rubbert for subsonic flow, their geometry and spline system was 
fist utilized by essentially replacing the subsonic aerodynamic influence coefficients by 
the equivalent supersonic relations. 

The source method first was tested on a variety of regular three dimensional bodies, 
including circular and elliptic cones and pointed bodies of revolution. The calculated results 
for circular cones and bodies of revolution were in agreement with exact theory; and for ellip- 
tic cones, good agreement with second order linear theory was found. The 6 parameter doub- 
let panel method was tested on cambered wings with zero thickness and linearized boundary 
conditions and gave excellent agreement with exact linearized solutions. 

Using source paneling on both surfaces of thin wings and on inlet nacelles lead to the 
discovery that internal wave reflections induced severe perturbations on the exterior pressure 
distributions. These perturbations were eliminated by using a combined source and doublet 
panel system with interior boundary conditions specified to eliminate the internal perturba- 
tion flow. 

An analysis of the aerodynamic influence coefficients indicated that discontinuities of 
the doublet strength, or of geometry at panel edges, introduce infinite square root singulari- 
ties on the Mach cones emanating from panel corners. For certain panel configurations these 
singularities produced large oscillations in the pressure, even though the doublet strength was 
very nearly continuous across panel edges. On the first attempt to eliminate this problem, 
the line integrals along panel edges which involve the doublet strength and which contain 
the strongest singularities were discarded; but the method proved inaccurate, indicating a 
strong sensitivity to continuity of doublet strength. 

It became apparent that to insure sufficient accuracy and stability the supersonic panel 
method must maintain continuity of both the doublet strength and geometry. A panel sys- 
tem with all contiguous edges was obtained by dividing the basic four point non-planar 
panel into eight triangular subpanels. A quadratic doublet distribution is applied over each 
triangular subpanel in such a way that the doublet strength is continuous at panel edges, 
leading to a new nine parameter spline for the complete panel. This new spline, with combined 
source and doublet panels to eliminate internal perturbations, was used to compute the flow 
over three wing-body models and yielded pressure coefficients in good agreement with experi- 
ment. .The present method appears to be insensitive to how the configuration is paneled, pro- 
vided no gaps occur at panel edges and no subpanels representing solid surfaces are inclined 
at angles with respect to the free stream greater than the Mach angle. 

To close inlets on nacelles for the purpose of eliminating internal flows, superinclined 
panels were developed and tested on a simple nacelle. The superinclined network was capable 
of absorbing the internal perturbations from the lip of the nacelle. With the addition of the 
superinclined networks, the panel method is now capable of computing the flow over wing 
and body combinations which include engine inlets as well. 

For those readers interested only in a simple overall view of the method and the results, 
section 2 the introduction, section 3 on theory, section 4 on the description of the panel 
method and sections 12 and 13 on results and conclusions may be understood without the 
details provided by the remaining sections. 



2.0 INTRODUCTION 

2.1 HISTORICAL DEVELOPMENT OF PANEL METHODS 

Methods based on linearized theory with singularity distributions over panels represen- 
ting aircraft surfaces have been found especially useful tools for analyzing the aerodynamic 
forces on aircraft. These methods can treat configurations of general shape which are not 
tractible by direct mathematical analysis. Boundary conditions are applied at discrete points 
associated with each panel of the surface. The required integrals are usually evaluated in 
closed form, and a set of linear equations results to be solved for the required parameters. 
These methods have been especially successful for subsonic or incompressible flow and since 
a good summary is given in Ashley and Rodden [ 1 I and Rubbert and Saaris [ 21, they will 
not be discussed here. The most recent method is that of Johnson and Rubbert [3]. Much 
of the technique for supersonic flow presented here is derived from their method. 

In recent years, there are three panel methods based on linearized supersonic flow 
which are noteworthy. Woodward 141 used constant pressure and constant source panels 
and applied tangential flow boundary conditions on wings and bodies. His method was later 
improved by utilizing constant line sources and vortices which vary linearly in the streamwise 
direction on each panel (reference 15 I 1. 

To obtain differentiability of the computed pressure, Mercer, Weber, and Lesferd [ 61 
used singularity splines providing continuity of the vorticity. Difficulties arose at discon- 
tinuities in the plan form for the vorticity method which were alleviated by rounding such 
corners. Piecewise linear pressure distributions were obtained for planar wings with linear 
boundary conditions instead of the stepwise distribution from the constant singularity panel 
methods. 

Morino, Chen, and Suciu [ 71 describe a method using Green’s formula for the potential. 
The boundary conditions of tangential flow are not applied directly to the potential in the 
useful way but are inserted into the source term in Green’s theorem. Requiring continuity 
of tangential flow near the surface insures that the boundary conditions are satisfied. The 
configuration is divided into quadrilaterals defined by an array of grid points on the surface. 
The surface is approximated for each panel by fitting a hyperboloidal surface through the 
four points which maintains geometric continuity with adjacent panels. The quantities, such 
as values of doublet and source strengths, were assumed constant on each panel leading to an 
influence coefficient method with a set of linear equations to be solved for the values of the 
unknown doublet strengths. 

In the appendix to reference [ 61, Mercer, Weber, and Lesferd suggest a doublet Mach 
line panel method using a fourth degree polynomial in characteristic coordinates for the 
doublet distribution on each panel to analyze planar wings. This type of paneling has a num- 
ber of positive features: 

. 

1. Discontinuities in pressure occur across Mach lines from planform corners and can be 
easily taken into account with Special Mach line paneling. 



2. The aerodynamic influence coefficients in the characteristic coordinates are very sim- 
ple, closed form expressions. 

3. Because of the domain of influence of the characteristic strips, the matrix of coefficients 
for the parameters can be made triangular by proper ordering, and hence the solution is 
exceedingly fast. 

4. A continuous pressure distribution is obtained. 

This method, along with a similar source panel technique, was derived and tested as part 
of the present contract. The basic theory and results are presented in a separate contractors 
report (reference [ 81). The source panel method was stable and accurate for both analysis 
and design boundary conditions. The doublet method was also stable for the region down- 
stream of the Mach line from the corner formed by the supersonic leading edge but was unstable 
for the region downstream of the Mach line from the comer formed by the supersonic.and 
subsonic portions of the leading edge. The cause of this instability was not pursued, principally 
because.the method was confined to planar wings with linearized boundary conditions and 
hence has limited application, but also because the subsonic method of Johnson and Rubbert 
[ 3 ] appeared to be a more promising approach. 

The most advanced panel method for subsonic flow is that developed by Johnson and 
Rubbert [ 31. The technique uses a quadratic approximation for curved panels with a quad- 
ratic distribution of doublet strength and a linear distribution of source strength applied to 
each panel. The vanishing of the normal component of the mass flux is applied as boundary 
conditions to solid surfaces instead of the vanishing of the normal component of velocity as 
in most of the earlier methods. This is discussed in section 3. The aerodynamic influence 
coefficients are correct to the first order in relative panel curvature. The method has the 
following properties: 

1. It is insensitive to how the configuration is paneled; and, hence, allows the use of auto- 
matic paneling programs. It does not require special experience in applying the program 
to practical engineering problems. 

2. It is economical in computation cost. For a given accuracy, the method requires fewer 
panels than the constant singularity panel techniques. 

3. It offers a wide variety in the choice of modeling techniques, including both design and 
analysis boundary conditions. 

The numerical method is stable, accurate, flexible, and efficient, essential properties 
for any numerical method to be useful and practical for engineering design and analysis. It 
was felt that the approach was ideal for supersonic flow as well. The techniques for treating 
the geometry and the mode of paneling in the subsonic method were utilized with very little 
change in the initial supersonic method, along with the quadratic doublet and linear source 
distribution on each panel. In subsonic flow, disturbances due to discontinuities of the doub- 
let strength at panel edges or gaps in panel geometry decrease in intensity with distance from 
their origin. In supersonic flow, similar discontinuities produce disturbances which do not 
decay with distance but introduce infinite singularities along Mach cones emanating from panel 
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comers. Hence, continuity requirements for supersonic doublet panels are considerably more 
strict than for subsonic. To overcome this difficulty, a paneling system with contiguous 
edges and a doublet spline with continuous doublet strength were developed. 

2.2 TECHNICAL APPROACH AND DEVELOPMENT OF THE PRESENT 
SUPERSONIC PANEL METHOD 

With the considerable success of the subsonic panel method of Johnson and Rubbert 
[3], it was natural that the same method of paneling and the same splines be utilized directly 
with the supersonic aerodynamic influence coefficients replacing the subsonic ones. The 
basic theory for linearized supersonic flow is presented in section 3. The perturbation poten- 
tial is derived as an integral over the surface of sources and doublets in section 3.7 in the form 

- 1 
t-03 = - z J 

u(Rg)ds B2 
+ 2a 

(Ro-z). ::ds 

RB RB3 
SW 

where the asterisk indicates finite part (see section 3.4), u is the source strength, ~1 the doublet 
strength, 

RB= d (x-xg,) 2 - B2 (y-yo) 2 - B2 (z-z,) 2 

is the hyperbolic distance, x = (x,y,z), Ro, the integration point, and B = P- M -1,andG 
= (n,, n y, nz) is the unit normal vector to the surface. 

The boundary conditions that the normal component of the linearized mass flux vector 
vanish on solid surfaces is given by the combination of equations (3.16), (3.12), and (3.8) and 
takes the form 

(*-B2Gx) nx + Gyny + Gznz = 0 

for the freestream velocity in the x direction. This is the basic boundary condition applied 
to surfaces over which the supersonic flow is to be determined. 

The configuration to be analyzed is divided into quadrilateral panels by a set of grid 
points on the surface. As in reference [ 31, an average plane is defined by the four midpoints 
of the lines joining the grid points. A linear source and a quadratic doublet distribution are 
prescribed over the projection of the panel onto the average plane and the integrals were 
evaluated in closed form. Associated with each panel, are a value of the source and a value 
of the doublet strength together with two appropriate boundary conditions. This leads to a 
set of linear equations to be solved in the form 



n 
Z aijXi = bj, j = 1,2,..n 

i= 1 

where aij is the matrix of aerodynamic influence coefficients, Xi are the singularity strengths. 
Once the Xi are found the velocity and pressure may be computed anwhere in the flow field. 

Johnson and Rubbert [33 also included a correction to the aerodynamic influence coef- 
ficients due to panel curvature, by expanding the potential for a curved panel in terms of the 
small quantities defining the panel shape and retaining only the first order terms. The same 
approach failed for supersonic flow because of the singularity on the Mach cone which was 
of higher order for the curvature terms and, hence, the pressures were non-integrable. With 
flat panels, the method produced excellent results for a wide range of configurations, and 
these are reported in section 12. 

Hess [ 91 has shown that a discontinuity in doublet strength induces the same velocity 
field as a line vortex. (The relationship between doublet sheets, vortex sheets and line vor- 
tices is explained in Appendix A of reference [ 91). Even when the doublet is continuous from 
one panel edge to the adjoining panel edge, gaps between panels will produce infinite singu- 
larities on the Mach cones from the panel corners because the gap prevents the cancelling of 
the two line vortices. These singularities in supersonic flow do not decay with distance from 
the edge as in subsonic flow but propagate along Mach cones nearly unattenuated (see section 
A8.1 in Appendix A). For some paneling configurations, these disturbances impinge upon 
control points and cause large oscillations in pressure. It was felt that since the discontinui- 
ties in doublet strength were small, the problem could be eliminated by discarding the line 
integrals of the doublet strength along panel edges which produce the line vortices. (For 
example, the second integral of the equation following equation (7.1)). When this was done 
the method proved to be inaccurate even for small discontinuities of doublet strength or geo- 
metry, although this approach was successful for subsonic flow. 

It became apparent that, for supersonic flow, the gaps at panel edges must be eliminated 
by a panel system that maintains continuity of geometry and by a spline system which ensures 
continuity of doublet strength. This was achieved by dividing the basic non-planar panel 
formed by the four points on the curved surface into 8 triangular panels in such a way that no 
gaps occur in the geometry (see figure 1). A quadratic distribution of doublet strength is pres- 
cribed over each triangular subpanel in such a way that doublet strength is continuous over the 
entire surface. This leads to a 9 parameter spline instead of the former 6 parameter spline; 
and with the combined source and doublet paneling yields satisfactory solutions for the super- 
sonic flow over complicated wing body configurations. 

Section 3 presents a derivation of the basic integral equations of linearized theory with 
appropriate boundary conditions, while section 4 presents a more detailed description of the 
panel method. Derivation of specific formulas for the method are given in Section 5 through 
11. For those interested only in an overall view of the panel method, section 4 and also sec- 
tions 12 and 13 giving results and conclusion may be read without the necessity of having 
read the complete theory. 
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3.0 THEORY OF LINEARIZED COMPRESSIBLE FLOW 

3.1 DERIVATION OF BASIC EQUATIONS 

To derive the basic equation we follow the analysis of Ward [ 101 and consider Euler’s 
equations for steady, inviscid flow in the form 

vx&=o (3.1) 

v.p~,=o 

PVC l 
vvc+vp=o 

(3.2) 

where vc = u + v, u is the free stream velocity vector, and v the perturbation velocity vec- 
tor. The quantities p and p are the pressure and density, respectively. With the subscript 0 
denoting free stream values of the quantities, linearizing of equations (3.1) to (3.3) yields 

(3.3) 

- 
vxv=o 

pov . v+v. v(p-po) = 0 

POU- vv+ “(p-PO) = 0 

(3.4) 

(3.5) 

Since for isentropic flow dp = c2dp zc02dp, where c is the velocity of sound, ehillating p 
and p between equations (3.5) and (3.6) gives a single differential equation for the velocity, 
namely, 

v. [V - a(~*v)/c()q = 0 

(3.6) 

or 
v.w=o (3.7) 
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where W = v - n(u 9 v)/co2 and we have made use of the fact that 0 is a constant vector. 
When we assume that u is a vector in the x direction, W becomes 

W = [ (1 - M2) u,v,w] (3.8) 

where M2 = 8.u/co2 is the square of the free stream Mach number. From equation (3.7) 
we see that the quantity W is conserved in the flow. In the following we shall show that W 
is proportional to the perturbation mass flux vector. 

To find the local linearized pressure we consider Bemouilli’s equation in the form 

s 

P 
dp/p +v, . f&/2 = 0 l 012 

PO 
(3.9) 

Expanding 1 /p in powers of p - po 

I/P = ~/PO - (dddp)o (P-PO)/PO~ + . . . 

P-P0 1 =1//Q-- - 
( ) 

+ . . . 
PO co2po 

and substituting into equation (3.9) yields 

P-PO) 1 P-P0 2 -- - 
( ) 

+ 
PO 2co2 PO . . 

.=-iJ.v--v.v;/2 

since v, = u + v. This can be solved for (p - po)/po by inverting the series. Thus, retaining 
no terms higher than quadratic gives 

p-p0 /p()=-u*v-v. w/2 (3.10) 

The quantity pow is now shown to be the linearized perturbation mass flux vector. Con- 
sider the difference between the local mass flux and that for the free stream. This is 

PVC - POU = (P-PO) u + p(-J 

with 
P-PO = (dpldp)o (P-PO) + . . . = (P-PO) /co2 +.. . . 



we have from equation (3.10) 

PVC - p($ = po [ Tm(Eq/c()2 + . . . ] = pow + . . . (3.11) 

Hence equation (3.7) is shown to be the conservation equation for the perturbation mass 
flux vector. 

The conditions of irrotationality, equation (3.1), is satisfied by introducing a velocity poten- 
tial. Let 

v= uovqb (3.12) 

then the conservation equation (3.7) becomes, with u in the x direction, 

(l-M2bxx + @yy + @zz = 0 (3.13) 

and is easily recognized as the classic Prandtl-Glauert equation for linearized compressible 
flow. From equation (3.10) the pressure coefficient becomes 

- cP= 1 
P-PO 

pouo2 
= - 24, - ( LGx2 + dJy2 + 9z2) (3.14) 

where 

fl2=l-M2 

When p2~ 2 is dropped this is the slender body approximation tothe pressure. For flat wings, 
the quadrttic terms are often neglected. However, we often compute pressure by the slender 
body approximation or by the complete isentropic relation. 

3.2 UNIQUENESS OF THE MASS FLUX BOUNDARY CONDITIONS 
IN SUBSONIC FLOW 

To demonstrate uniqueness of the solution of equation (3.7) or (3.13) under certain 
boundary conditions for subsonic flow, we apply the divergence theorem to @W for a volume 
V enclosed by a surface S. We obtain, usingv. W = 0, 

‘- 
W.v$dv= 2 3 u- + v2 + w9 dv (3.15) 



where fi= ( >. n X’ “y’ “z is the outward normal to the surface S. Let S be divided into two 
parts with $ prescribed on Sl and 6’ l fi prescribed on S2. Since the differential equation is 
linear, the difference of two solutions is also a solution and equation (3.15) holds. Let 4 
and W denote. the difference of two solutions which satisfy the same prescribed boundary 
conditions. Then the surface integral on the left hand side of the equation (3.15) vanishes. 
The volume integral on the right side is identically equal to zero. Since the terms of the inte- 
grand are always positive, the integral can be zero only if the terms of the integrand are zero 
everywhere, and the two solutions are identical. Hence, the solution of V- W = 0 will be 
unique with C$ or W l fi prescribed as boundary conditions on the surface S. This can be shown 
for infinite regions when @ goes to zero like l/r as r goes to infmity. In the light of the uni- 
queness theorem it is appropriate in our panel methods for analyzing the flow over bodies to 
use linearized mass flux boundary conditions. On solid boundaries this takes the form 

(~iW).::=O (3.16) 

or for the velocity potential in equation (3.12) and a free stream velocity in the x direction 

(1 +82~x)nx+Oyny+~znz=0 (3.17) 

This equation can be written in a different form by introducing the conormal vector 

EC = P 2 n,, ny, nz 

We obtain for equation (3.17); 

nx + a4/an, = 0 

The conorrnal derivative of the potential then can be interpreted as the normal component of 
the perturbation mass flux to the surface. 

The differential equation (3.13), the pressure relation in equation (3.14) and boundary 
conditions in (3.17) comprise the fundamental boundary value problem we are solving for 
analyzing aircraft configurations by the methods described here. When the flow is subsonic, 
the equations can be converted to the incompressible flow by introducing the incompressible 
velocity potential 

@ = @i/P (3.18) 
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and scaling the x variable by 

x + x/P 

Since nx+ n,/fl, we obtain 

&xx + Giyy + Gizz = 0 

cp = Cpi/B2 

Cpi = - 2@ix - ( @ix2 + 9iy2 + @iz2) 

(l + @ix) n, + @iyny + @iznz = 0 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

Note that the compressible pressure coefficient including the quadratic terms is related to 
the incompressible value by the factor l/p2. This was first pointed out by Goethert [ 11 I. 
Equations (3.21) and (3.23) form the classical Neumann boundary value problem for Laplace’s 
equation. Solutions to this problem are unique. This is another proof of uniqueness for the 
mass flux boundary conditions in linearized subsonic flow. Equations (3.21), (3.22), and 
(3.23) are the basic equations for the subsonic panel method described in Johnson and Rubbert 
[31 and which is utilized to a great extent in developing the supersonic method to be presented 
in the following. 

Equation (3.17) and the definition of the conormal hold for supersonic flow as well. 
Since M > I, we obtain 

( 1 -B2#x > n, + Gyny + Gznz = 0 

where B =,/z 1. The conormal then takes the form 

ii, = - B2nx, ny, nz 
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3.3 EULER MOMENTUM THEOREM FOR MASS FLUX 
BOUNDARY CONDITIONS IN LINEARIZED THEORY 

We shall show that the mass flux boundary conditions are also compatible with Euler’s 
momentum theorem when p, the pressure, is given by equation (3.10). For a closed surface 
S with no internal sources and for which the velocity vector V, is not singular, the theorem 
takes the general form: 

For linearized flow the mass flux vector pvc becomes 

and we have the momentum integral 

SC S 
p::+po(u+ii$::(n+v)] ds=O (3.24) 

This can be shown to be valid for any surface S enclosing a volume V of the fluid 
when the pressure is given by equation (3.10). After eliminating the pressure, the momen- 
tum integral in equation (3.24) becomes 

PO 
/ 

$. [-1(~.~+~.~/2)+(~+~)(~++)] ds 
S 

where I is the identity matrix for which fi . I = fi. Applying the divergence theorem 

replaces the surface integral by the volume integral 

PO 
f 

v [-v(i?.i+v(i7.%)/2+~.v ~+~.,V+(~+?J)v.~]dv 
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where we have made use of the fact that u is a constant vector and also 

v* (I$) = v $/ 

for a scalar ‘$ and 

for vectors vl and v2. 

Now applying the formula from vector analysis 

to W X (v X v) and noting that v operates only on V yields 

Wx(vxV)= v[W] .v-w. vv 

Since the vectors v and W are related by a constant symmetric matrix in the statement 
following equation (3.7) they have the property that 

We finally obtain 

Wx(vxV)= V(CW)/2-CL vv 

Similarly, as U is a constant vector, we have 

T7x(vxV)= v(U.J)JJ. VT 

With these substitutions, the volume integral finally becomes 

po 
f 

[-nx(vxv)-~x(vx~)+(~.~) v.w] dv 
V 

Since we assume potential flow, then V X v = 0 and v. W = 0. The integrand of the volume 
integral vanishes identically thereby proving that equation (3.24) holds for any arbitrary 
surface enclosing the flow when the pressure is given by equation (3.10). 
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Let S consist of a body Sb, both sides of a-doublet sheet S,, and a surface S’ enclosing 
the body. It will be shown in section 3.7 that W . fi is continuous across the doublet sheet. 

Cross-section of Surface S 

Since (u + W) . fi = 0 on the body and W. 2 is continuous across the doublet sheet, the 
integral over Sb and S, yields the body force 

Hence the body force F can be found by an integral of the pressure and momentum through 
a surface S’ enclosing the body using equation (3.24); namely, 

The surface S’ is arbitrary but care must be taken in integrating about edges of the doublet 
sheets with singularities in the potential. For greater details the reader may consult Ward 
[ 101 and the applicable references. 
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3.4 INTEGRAL EQUATIONS FOR SUPERSONIC LINEARIZED FLOW 

Except for the uniqueness proof and scaling of the velocity potential, the foregoing 
analysis is directly applicable to supersonic flow. To derive an integral equation method 
we apply the divergence theorm to the quantity 

where the subscripts 1 and 2 denote two distinct solutions of equation (3.7). Using the 
identityv$l . W2 =v42. Wl, we obtain 

@V2 - qb2W1) . :: ds = d, v. &-$,v. W,)dv 
S 

(3.26) 

For the subsonic method $2 was chosen as the point source 

r2 = (Y-Yo) 2 + (z-q) 2 (3.27) 

which satisfies 0. W2 = 0 except at the point x0 = x, y0 = y, and z0 = z. With 42 from 
equation (3.27) in equation (3.26), the surface integral yields a solution for $1 in terms of 
source and doublet distributions over the surface. An analogous procedure was used by 
Hadamard [ 121, Ward [ 101, and by Heaslet and Lomax [ 131 for supersonic flow. Since 
M > 1, the coefficient of the $xx term in equation (3.13) is negative and the differential 
equation becomes hyperbolic. The supersonic equivalent to equation (3.27) is then 

$2 = ~/RB (3.28) 

where 

RB=Jw and B2=M2-I. 

The supersonic case is much more complicated than the subsonic, since the equivalent point 
source has singularities along the surface x - x0 = f Br as well as at the source point x0, 
y0, z0. With $2 substituted into equation (3.26) some of the integrals do not exist in the 
usual mathematical sense and require special treatment first introduced by Hadamard [ 123 
and explained briefly farther on in this section of the report. 

It is worthwhile to examine the fundamental differences between subsonic and super- 
sonic flows. When a disturbance occurs at a time t = 0 the wave propagates into the fluid 
at the speed of sound while at the same time the disturbance is being convected by the 
stream. In an infinite time with a subsonic free stream, the disturbance will fill entire 
space (see tig. 2). When the stream is supersonic, the disturbance is convected away from 
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its origin at a speed faster than its propagation rate into the medium. Consequently, the 
disturbance is confined to a conical region formed by the envelope of spherical wave fronts 
of the convected disturbance source as shown in figure 3. The sine of the cone angle is 
the ratio of sound speed CO to the free stream velocity UO, or the reciprocal of the Mach 
number. The region of influence of the disturbance from a point is easily recognized from 
figure 4 as the region bounded by the downstream cone from ( x0, y0, ~0). In this 
region the radicand in the point source 42 in equation (3.28) is positive or 

Ix-x0 I > Br 

The Mach cone has two nappes. The downstream cone x = x0 + Br bounds the domain 
of influence of the point x0, y0, z0, while the upstream cone x = x0 - Br bounds the 
region which influences the point x0, y0, z0, or the domain of dependence of the point 
x0, yo, zo (see fig. 4). 

The Mach cone is also a characteristic surface associated with the differential equation. 
Across characteristic surfaces the normal derivative of the perturbation potential may be 
discontinuous while the tangential derivative remains continuous. This can occur only if 
the differential equation can be expressed in terms of derivatives along these surfaces. 
Characteristic surfaces are also the surfaces for which the normal component of the free 
stream velocity is equal to the speed of sound and hence can only exist in supersonic flow. 

These characteristic surfaces can represent shocks in linearized supersonic flow 
since in the limit as shock strength approaches zero, the shock approaches the characteristic 
direction. For exact supersonic flow, entropy increases across a shock and the flow is 
usually no longer irrotational. Since the entropy is of the third order in shock strength, 
the assumption of irrotational flow is still valid to the second order in linearized supersonic 
flow. For flows containing only weak shocks, linearized theory can be expected to yield 
satisfactory results. 

Discontinuous expansion waves also occur at characteristic surfaces in linearized 
theory. In exact theory, the expansion waves are in the form of a continuous centered fan 
of characteristics instead of a single discontinuity. The approximation of expansion waves 
by an ‘expansion shock’ is valid near the surface but is a poor representation of the flow at 
greater distances away from the surface. Linearized theory solutions involving rapid 
expansions can be expected to yield good pressure distributions on the surface but the 
induced flow at large distances from the expansion surface will not be accurately described. 

Because of the inverse square root singularity on the Mach cone of the supersonic 
source, the derivation of the integral equation method for-subsonic flow using source and 
doublet surfaces cannot be carried over directly into supersonic flow, since derivatives of 
the source occur. Volterra (see ref. [ 141) avoided this difficulty by using a different 
fundamental solution for $2 which vanishes on the Mach cone. Hadamard [ 121 got around 
the difficulty by defining the finite part of the divergent integrals resulting from using 
the acoustic source equivalent to equation (3.28) in solutions of the wave aquation. This 
approach was also applied by Ward [lOI, Robinson [ 151, and Heaslet and Lomax [ 131. 
TO illustrate this concept, consider the following integral 
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/ 

b 
I(E) = f(x)dx/(x-a>3/2 

a+e 

If f’(a) exists and is bounded in the interval a to be, then I(E) exists. To assign a meaning 
for E = 0 we write I(e) in the form 

s 

b 

s 

b 
I(E) = [f(x) - f(a)] dx/(x-a)3/2 + f(a) dx/(x-a)312 

a+e a+e 

s b 
= [f(x) - f(a)] dx/(x-a)3/2 - 2f(a)/(b-a)1/2 + 2f(a)/e112 

a-k 

As e+O the first integral exists as an ordinary improper integral. We further write 

J 
b 

I(E) = [f(x) - f(a)]/(x-a>3/2 - 2f(a)/(b-a)1/2 + 2f(a)/e1/2 
a 

-f 

a+e 
[f(x) - f(a)] dx/(x-a)3/2 

a 

Hadamard [ 121 defined the first two terms as the finite part of I(0). Ward [IO] used the 
notation *I to denote this finite part. Hence 

*I = lim {I(e) - 2f(a)/e112 -I- O(E~/~)) 
E-,0 

The unique finite part of an infinite integral is demonstrated here for a single variable but 
it can be generalized to integration of several variables. The finite part can be shown to 
have the following properties (ref. [ 101): 

1. If I converges then *I = I. 

2. The value of *I is invariant under coordinate transformation provided the transformation 
itself is not singular on the surface of singularity of I. 
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3. If *I involves vector quantities, then *I is invariant under rotation of the coordinate 
axes. 

4. If I(E) vanishes for all E, then *I = 0. 

5. Differentiation of finite part integrals with respect to a parameter may be moved 
inside the integral. For example, 

(a/as){ fds=f af/aads 
S 

Hadamard [ 121 also showed that the divergence theorem holds for the finite part 
integrals, i.e., 

s 

* 

/ 

8 

v .Wdv= w.“nds 
V S 

and Robinson [ 151 extended the principle to include Stokes theorem 

/ 

* :i; 

vx%$ds= 
s 

v. d!? 
S C 

With the concept of finite part of an integral to give meaning to the divergent integrals, 
we are now able to proceed in the same manner as in incompressible flow. We first show 
that the mass flux from $2 in equation (3.28), through a surface enclosing the point x0, 
y0, z0 is independent of the choice of surface. We can assume without loss of generality, 
that x0, y0, z is the origin of coordinates. 
-a < X < a, ry= y2 + z2 G (a/B) 

Let this surface contain the closed cylinder 
2, which intersects the downstream Mach cone at x = a. 

On this cylinder, C#J~ and W2 are non-zero only on the plane x = z. 

To evaluate the mass flux we consider the surface S(E) interior to the Mach cone as 
in figure 5. Then the mass flux is given by 

J(E) = 
f 

it’. I? ds = -B 
f 

aG2/ax dydz = 
f 

B2a dydz/&m 

S(E) S(E) S(E) 

Bq/a pdpd*/,&$ = 2s [l/d- - 1] 
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Since q = a/B - E J 1 +B2 B 

J(E) = - 277 + 27r J 
-- 1 +aB2 ,ll/2 

and 

J* =lim J(E) - 2n/e / [ 1 
t?+O 

This gives the mass flux from the plane cutting the cone. We need to show that for 
two surfaces, Sl and S2, which cut the cone for x > 0 as shown in figure 5, the mass flux 
through each surface is the same, or 

s 

* * 

W.::ds= s W.::ds 

Sl S2 

Applying the divergence theorem to the volume between the two surfaces yields 

s 

* 

w.::&= f *kfids=f *v.wds 

Sl S2 V 

where V is the volume enclosed by the two surfaces and the Mach cone. Since this volume 
does not contain the origin where wis not defined, V. w = 0 from equation (3.7) and the 
mass flux is seen to be independent of the choice of surface enclosing the source point. 
The fundamental solution 

@ =- ,/2nR~ (3.29) 

then represents a true supersonic source of unit strength. 

3.5 INTEGRAL EQUATION FOR SUPERINCLINED PANELS 

We now derive an integral equation for superinclined surfaces, i.e., surfaces inclined 
with the free stream at angles greater than the Mach angle. We consider the volume in 
figure 6 enclosed by the surface S, the upstream Mach cone I’ and the circle Sl, near to but 
excluding the vertex of the cone at the point x, y, z. For @2 in equation (3.26) we use 
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~5-2 = l/RB for RB2 > 0, x0 < x 
= 0 at all other points 

and for ~$1, we simply write 4. Since by equation (3.7)V. !%’ =V. w2 = 0, equation (3.26) 
yields 

/ 

* 

[$W2-@2i+fidsfO 
s+r+s 1 

The integration over the cone surface r can be eliminated since the integrand is singular 
there and, hence, it makes no contribution to the finite part. The integral over the small 
circle Sl involving w2 becomes 

s 

* 

s 

:ti 

@w,.::ds”; w2.::ds 

Sl Sl 

where the tilda denotes average value over the surface S1 . This is the same integral used 
for computing the mass flux from a point source, but with the normal directed in the 
opposite direction. Hence, we obtain, by letting the surface Sl approach the cone vertex, 

limit 
Sl +o J 

@W-J. r; ds = 2n @(x,y,z) 

Sl 

(3.30) 

Similarly, for the other integral over S1 

2ll f $2w.;ds -m.:: f @2ds=i%.:: 

Sl Sl 
/s 0 0 

- = 2n (x-x0) iii . G/B 
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The contribution of Sl from $2 vanishes as x - xc) goes to zero. Finally, the integral 
equation for superinclined surfaces takes the form 

1 
4=z ds 

S 

After substituting 42 and w2, 

*&o-R) .::ds 

RB3 
(3.31) 

It is not necessary to take the finite part of the first integral since the integrand has an 
integrable singularity. Since 

the first integral of equation (3.3 1) represents a distribution of sources while the second 
integral a distribution of doublets. It is easy to show that 4 takes on the prescribed values 
on the surface S. As the point x, y, z moves to the surface, the integration over S 
becomes the same as the previous integration over Sl near the vertex of the Mach cone, 
but with the normal now directed inwards toward the vertex. Thus, 

1 
@=z 

J 
(w.::$+$Fi)ds-& 

S 
v.$ $2ds-& dw,.nas=@ 

Similarly, w. fi can be shown to take on the assigned value. 

3.6 UNIQUENESS OF THE SOLUTIONS WITH POTENTIAL AND LINEAR MASS FLUX 
BOUNDARY CONDITIONS ON SUPERINCLINED SURFACES 

It is possible to show that when I#J and %‘. $ are prescribed on a surface inclined at 
an angle greater than the Mach angle, that the solution is unique. To that end, we apply 
the divergence theorem to the matrix quantity 

-- 
VW-(V. W)I/2 
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where I is the identity matrix. We obtain 

J 

-- 
{ih .w+w. vi7- v(V. W)/2} dv = 

J 

-- - --A (VW-$-V. Wn/2)ds (3.32) 

V S 

where we have used 
--- -- -- -- 

v*(VW)=Wv.V+V.vWandv.(V.W)I=v(V.W) 

For irrotational and-source free t&w,the volume integrals disappear since we showed 
in section 3.3 that W l V V - V (V l W) 12 = W xV x V = 0. Consider the x component of 
this surface integral: 

4yny + n,@, - B2Gxnx ) - (- B2@x2 + @y2 + Gz2) nx/2] ds = 0 (3.33) 

Simplifying and factoring yields 

/[ 
( tiy - 4xny/nx ) ( 2+ - 

S 

“Y 2 +nz2 

nX 
2 1 @X2 1 n,ds = 0 (3.34) 

Denote by & the boundary values of I$ and its derivatives. Then the squared terms in the 
first two pairs of parentheses are &2y and &2z, respectively. Furthermore, if I’, say, is a 
characteristic surface, then 

B2 - (ny2 + nz 2 > /nx2 = 0 

On such a characteristic surface r, the integral becomes 

- Sign (nx) $ [@sy2 + Gsz2] dydz 
r 
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Let S consist of three parts as shown in figure 7. 

1. The characteristic cone x = xl - B /(y-y 1) 2 + (z-zl) 2 denoted by I’. 

2. The plane x = 0 with B2 [(Y-Y 1) 2 + (z-zl) 21 < x 1 2 denoted by S 1, and on which 
boundary conditions are to be applied. 

3. Theplane x=x0,0<xO<xl,withB2[(y-yl)2+ (z-zl)2]< (~O-xl)~ 
denoted by S3. 

Since on Sl and S3, we have nx = -1 and 1, respectively, with ny = nz = 0, then the 
integral in equation (3.34) becomes 

%y2 + %z2) dydz + f $ [B24x2 + $y2 + Gz2 dydz] 
Sl 

-ff [ 
B2~x2+@y2+@y2+$z2]dydz=0 

S3 

since on r, n, > 0. 

Let $J = 41 - 42 where the subscripts 1 and 2 denote two solutions with the same 
prescribed values of 4 and $x on the plane x = 0, i.e., on the surface Sl . Then $ = tix = 0 
on Sl and the second integral over Sl vanishes in equation (3.35). It follows from the 
form of the remaining integrals that 

The surface S3 may be varied arbitrarily along the cone axis. Hence, Gx = Gy = r#~~ = 0 
everywhere inside the cone. Therefore, when +x and C$ are prescribed on Sl , then CJ~ is 
uniquely determined inside the Mach cone from the point xl, yl, zl in figure 7. 

Under the section on coordinate transformations, the hyperbolic distance and the 
differential equation are shown to be invariant under a rotation about the x axis and 
under an oblique transformation in the plane containing the x axis. If the transformation 
is chosen for a superinclined panel so that the new variables y, z are in the plane of the 
panel and x is the variable out of the panel; then, for panels inclined to the free stream at 
angles greater than the Mach angle, the area element and the conormal derivative 
transform according to 

(3.35) 

(Wan&s+ (w/ax) dzdy (3.36) 
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Ward [ 101 states that for superinclined surfaces, the conditions 

are generalized to 4 and &$/an. The boundary conditions should more correctly be 
generalized to 

#, a@/an, or K l fi 

prescribed on the panel. 

3.7 INTEGRAL EQUATION FOR SUBINCLINED PANELS 

To apply panel methods for the solution of the supersonic flow over wings and 
bodies, we must consider subinclined surfaces, i.e., surfaces inclined at angles less than 
the Mach angle. In section 3.6, it was shown that boundary conditions can only be 
applied on the downwind side of the superinclined surface. For the subinclined surface, 
boundary conditions may be applied to either or both sides. Consider an almost planar sur- 
face. If the surface is slender and lies within the Mach cone, then the perturbed flow is con- 
fined to the downstream Mach cone emanating from its vertex. If the surface cuts the down- 
stream Mach cone emanating from the forwardmost point of the surface, then the region of 
disturbances lies downstream of the characteristic surface formed by the envelope of Mach 
cones emanating from the leading edge (see fig. 8). This is the surface at which the flow 
first experiences a disturbance. To apply equation (3.26) we consider 2 volumes, V 1 and 
V2, illustrated by the cross section drawing in figure 8. The volume Vl is bounded by the 
following surfaces: 

rl consisting of the leading edge characteristic surface cut out by the Mach cone r 
from the point x, y, z. 

S, the circle of radius E formed by the plane excluding the highest order singularity 
at x, y, z from the volume V. 

SW the portion of the subinclined surface cut off by the Mach cone where 
boundary conditions are to be applied. 

We have already shown in equation (3.30) that as e+O the contribution to the surface 
integral Se was equal to 

27MX,Y,Z) (3.37) 

The direction of the conormal along a Mach cone or any characteristic surface lies along the 
generator and hence W. f; is the perturbation tangential velocity. Because w. fi is zero 
ahead of the characteristic surface rl then w l fi is zero on the downstream side since this 
is required by the continuity of mass and momentum across the surface. Hence, @ is 
constant on the characteristic surface I? 1. Since the addition of a constant to the velocity 
potential does not affect the velocity, we may choose this constant as zero to eliminate 
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the integral over the surface I’1 . Since the finite part cancels the integral over the Mach 
cone I’ where the integrand is infinite, we obtain finally from equation (3.26). 

J 

* 

W,Y,d = - & (9+7472-~+$2) .“nds (3.38) 

SW 

in the notation of Ward [ 101 this becomes 

- 1 
G(R) = 5 f 

w+(&)) l :: ds B2 
RB -2n s 

* Q+ (Ro) (Fo-x).::ds 

RB3 
(3.39) 

SW SW 

or by defining the conormal vector, ii, = , we also obtain 

J w+(a,) ofids 

SW 
RB -& (’ @+(“o) & (&) ds 

W 

Comparing this equation with equation (3.3 1) we see that this formula holds whatever the 
inclination of the surface SW. For superinclined surfaces, we showed in section 3.6 that 
4 and ii’. fi take on the boundary values @+ and Gi+ ’ . n in the integrals on the right hand 
side of the equation. For subinclined panel surfaces, 4 and w. ‘$ are not independent. We 
now consider the volume V2 which is bounded by the surfaces consisting of the portion 
of the Mach cone r on the side of SW opposite the point x, y, z and the surface r2 of the 
lower characteristic surface from the leading edge. Since for the finite part of the integral, 
the integrals over r2 and r vanish where the integrands are infinite, we obtain 

s 

* 

1 0=-z ($3i2-~-qb2). fids 

SW 

or 

o=-& -- s w-f&)) l :: B2 

RB 
_- ds -2n s RB3 

(3.40) 

SW 
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This indicates the dependence of 4 and w. fi boundary conditions on Sw for subinclined 
surfaces. This is the same surface as in equation (3.39) but fiis directed outward on the 
opposite side of SW. Adding equations (3.39) and (3.40) then yields 

s 

[3+(i?o) -%+( i?o)] l :: ds * B2 [@+(a,) - qb-(&,)] (&-K, . fids 

SW 
RB -2a s 

SW 
RB3 

(3.41) 

Although equation (3.41) was derived with the point R in the upper region of 
figure 8,‘it is valid for a point anywhere in the flow field. We can deduce from equation 
(3.41) that a discontinuity in the perturbation mass flux across a surface with the per- 
turbation potential itself continuous, produces a distribution of sources of strength 

o=w+.g-iv-.$ 

with the flow field described by the potential 

p&f U$ 
SW 

(3.42) 

Similarly, a jump in the velocity potential across a surface with continuous normal mass 
flux produces a doublet sheet of strength 

P = 4’(Q)) - G-(q)> 

whose flow field is described by the potential 

* B2 
@=-271 s 

* &a,) (i?, -E) . $ds 1 
=-s-Y (3.43) 

SW 
RB3 

Conversely, a source distribution u defined over a surface produces a jump in the normal 
component of perturbation mass flux of magnitude u and continuous potential across 
the surface while a doublet distribution produces a discontinuity in potential across the 
surface with the normal mass flux remaining continuous. 
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3.8 UNIQUENESS OF SOLUTION ON SUBINCLITVED SURFACES 

Proving uniqueness for certain boundary conditions applied to subinclined surfaces 
is not as straightforward as for the super-inclined surfaces. Consider the following integral 
derived in Appendix 1 of Ward [ 101. 

(3.44) 

The volume integral becomes zero for irrotational flow in which 

v.iv= vxv=o 

We choose the surface S to consist of the three surfaces in figure 9 or 

1. Both sides of the wing surface SW. 

2. A plane downstream of wing leading edges S3 and normal to the free stream 0. 

3. The characteristic surface rl from the leading edge of the surface SW. 

Assume u to be in the x direction. Then the integral over S3 becomes 

ug 
2 

$ (B&2 + v2 + ~2) dydz 

S3 

The integral over r 1 vanishes sincethe-integrand was proved by Ward to be continuous 
across characteristic surfaces and W = V = 0 ahead of the surface. Equation (3.44) 
becomes 

32 
2 f 

(B2u2 + v2 + ~2) dydz + 
J-c 

u.v+iv+ 

S3 SW 

+ / jj.v-+.^,+-.ii’-.; ds=O (3.45) 
SW 

To express the integrand in a form more suitable for considering normal mass flux and 
tangential velocity boundary conditions, we divide v and w into normal and tangential 
components. 
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Then the integrand takes the form 

and equation (3.45) becomes 

(UoP?/( J32,2 -t- v2 + w2 ) dydz + 

S3 

-- ; Vt- . i$- fi . h ds (3.46) 

The approach to proving uniqueness using the preceding integrals is similar to that used 
for the superinclined panels. The vectors v and m are chosen as the difference between two 
solutions which apply the same boundary conditions to the surface SW. If the surface 
integrals over SW are all zero, then the integral over S3 is zero. Since the integral over S3 
is the sum of squares, the integrand and the individual velocity components must also be 
zero. Since S3 is a general surface and may be moved, then u = v = w = 0 and the two 
solutions are identical. 

From the form of the integrals above, it appears that if both w. $ and vt boundary 
conditions are applied to each surface, the solution is unique. However, for three dimen- 
sional configurations, we usually are interested in solutions for the flow over the exterior 
(or + side) of the surface. We then eliminate the interior flow by setting 

~--.~g7-,&0 (3.47) 

Since we demonstrated in section 3.7 that the source sheet produces a jump only in the 
normal mass flux and the doublet sheet, a jump only in the tangential velocity, we have 
on the upper surface 
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i+.::=fJ 

v+x::=v/.lx:: 

where u and /A are the source and doublet distributions on the surface, respectively. Subject 
to equation (3.47), two solutions having the same source distribution and doublet distribu- 
tion c’an be seen from equations (3.46) to be identical. We cannot choose both CJ and p 
independently, however, since we must also have, from equation (3.47), 

?lxT--=$xvf#r=o. 

Since this is the tangential derivative on the surface, it is identically satisfied when 

l#r=o 

or from equation (3.41), (3.42), and (3.43), 

B2 uds 
-2% J 

* /A(&)) (Tj;o - if) l Gds =L 

SW 
RB3 2T /- RB 

SW 

(3.48) 

Hence, we are free to choose only one of the functions u and P. The most generally applied 
boundary condition is the condition that no mass flux penetrate the surface or 

which fixes the value of the source distribution, namely, 

fJ=-u.:: 

Uniqueness of solutions with 4 = 0 and u = -D. fi boundary conditions depends only 
upon uniqueness for solutions of the integral equation’(3.48) for P. Discretization of 
equation (3.48) by a panel method leads to a set of simultaneous equations of the form 

aijpj = bi ij=1,2,3,. ., n (j summed) 

where i, j denotes the points at which bi is evaluated and nj are values of the doublet strength 
to be determined. Because of the nature of the kernel function 

B2@0 - R). :: 

RB3 
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the aij are diagonally dominant. When the matrix is of rank n then the solution of the 
discrete values of /A are unique. When the discretization is properly carried out, then we 
have shown that the solution with the potential boundary conditions 

.=-c.fi d-=0 

is unique and satisfies the condition that the normal component of linear mass flux 
vanish on the exterior (+) surface. 

We shall now consider uniqueness of linearized supersonic flow solutions when 
linearized boundary conditions are applied on a plane z = 0. The quantity 0 l fi is then 
identically zero on the surface and the surface integral in equation (3.45) becomes 

(UO,2> f (B2u2 + v2 + w2) dydz 

S3 

+ J v.v+ . %+ k ds 
SW 

+ J u.\l- w-.;: ds=O 
SW 

In the same manner we let v and w represent the difference between two solutions with 
the same boundary conditions, then we see that the solution is unique if either 

or 

is prescribed over the surface SW. The quantity a. v is the linearized pressure and, hence, 
is the design type boundary condition while w. fl= &$/az is the downwash boundary 
condition relating to the wing slope. From the form of the integral over SW, solutions in 
which part of the surface has design type boundary conditions and part downwash boundary 
conditions are also unique. 
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3.9 THE VELOCITY COMPONENTS NEGLECTING VORTICES AT PANEL EDGES 

The velocity components can be computed by differentiating equation (3.39). This 
approach will lead to integrals containing the doublet strength which will introduce 
vortices at panel edges when doublet strength is not continuous. Another form of the 
velocity vector which contains no integrals of the doublet strength to produce these 
vortices is obtained by using the identity established by Ward in appendix 1 of reference 
[ 101, i.e., 

/ ( -- -- 
vlwpi?+v2w~ .;-vl .W2i?)ds = 

P 3 
71 v.w2+Fp7.w~- i$ X (0X v2) 52 X (vX&)] dv (3.4g) 

If the volume is source free and the flow is irrotational, the volume integral vanishes. Let 
W2 and V2 be given by the source in equation (3.28) and the surface S contain a surface 
SW on which boundary conditions are to be applied, a characteristic surface from the 
leading edge of the wing surface SW, the cone from the point x, y, z and a circular cross 
section Sl cutting the Mach cone close to the singularity at x0 = x, y0 = y, and z0 = z, as 
shown in figure 10. Since V2W 1 = V 1 W2, the last two terms of the integrand of equation 
(3.49) become 

-- -- 
v2wl.~-~l.w2~=v2w1.~-v2.w~~=w~x(~2x~). 

Now, as the distance from the singularity of Sl at x,y,z goes to zero, we have 

f * ,~l~2.$+WlX@2Xfi)]ds--~l f * w2’::ds+%ilX f * (v&)ds 
Sl Sl Sl 

The first integral has been evaluated for the integral equation of 4 and Ward [ lo] has shown 
that the second integral is zero, hence, 

J 

* 
-- 
[ vIwpc+w] x (772 XC)] ds = 27rvl (x) 

s 
-- 

After substituting V 1 W2 l 2 - Vl . w2 k = (t X vl) X w2, the relation for the velocity 
vector becomes, after dropping the subscript 1, 

* 
-- 
V(R) = -& SL 

V2 (::. TV) + &XV) XV21 ds 

SW 
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Substituting for v2 and w2 from equation (3.28) yields 

If the panel is superinclined, fi X I and w (Ro ). ff take on their appropriate 
values on the surface SW. For the subinclined surface we incorporate the region on the 
opposite side of the surface lying within the Mach cone from the point x, y, z as we did 
for the velocity potential. This makes no contribution to V(R) and we obtain 

V(R)+- ,, (Ro) v(k) ds -g [ * (‘xvp) x;2-E’ds (3.51) 
W W 

where u = W+ . fi - W; fi is the source distribution on the surface and p = @+ - @- is the 
doublet distribution. The quantity fi X vp is the vorticity vector lying on the surface SW. 
Note that the doublet integral contains only derivatives of p. This is the form for the 
velocity applied to panels when line integrals of the doublet distribution are to be 
excluded. The integral may also be written 

s 

1: 

B :’ (f;xv&(i?,-&ds _ ;; 
s 

vp i&R ) .?l 
-2% dS 

SW 
RB3 

SW 
RB3 

B2 
+Tr s 

* (E. - E) . v7/lfids 

RB3 
(3.52) 

SW 

3.10 BOUNDARY CONDITIONS ON WINGS AND BODIES 

We have shown that unique solutions are obtained by prescribing the potential and 
the linear mass flux boundary conditions on the downstream side of surfaces inclined at 
angles to the free stream greater than the Mach angle, i.e., superinclined surfaces. When 
the flow is subsonic, the solution can be shown to be unique if either the potential or the 
normal linear mass flux is prescribed on any surface. There is no similar proof for 
subinclined surfaces in supersonic flow. When linearized boundary conditions are prescribed 
on a plane then the solution is unique when either the linearized mass flux or the linear 
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pressure are prescribed. Furthermore, the solution is also unique if mass flux boundary 
conditions are prescribed over part of the surface and linear pressure boundary conditions 
are prescribed over the remainder. 

Using either a source or a doublet distribution alone on a closed surface such as a wing 
or body, yields an interior flow with disturbances propagated along Mach lines and reflected 
from the surface and causing unrealistic variations in the exterior pressure distribution. 
By utilizing a combined source and doublet distribution on each panel, it is possible to 
eliminate the interior flow for a wing or body and to provide a smoother pressure distribu- 
tion on the exterior of the wing or body. We have shown in section 3.8 that choosing the 
source strength u according to 

and setting 

on the interior of the surface, produces the appropriate boundary conditions of no mass 
flux through the surface, 

W.$=-0.G. 

To preserve continuity of doublet strength, vortex sheets are shed from the trailing 
edges of wings. When the trailing edge is supersonic, the flow at any point on the edge is 
not influenced by any other point on the edge. The flow then changes abruptly across the 
trailing edge as in two-dimensional flow. On subsonic edges, the flow at any point on the 
edge is influenced by all points along the edge contained in the Mach cone upstream of 
that point. The flow must leave the wing smoothly and a Xutta condition is applied to all 
such edges. Special planar wake panels preserve continuity of the doublet strength with 
the wing trailing edges. The doublet strength on the panels depends only upon the 
variable normal to the flow direction. Thus, the linearized pressure jump 

AC, = - 2aj.ilax = 0 

is a necessary requirement since the doublet sheet representing a shed wake must not support 
a pressure differential. 
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4.0 GENERAL DESCRIPTION OF THE SUPERSONIC PANEL METHOD 

4.1 EARLIER SIX PARAMETER SPLINE METHOD 

It was shown in section 3 that solutions to the linearized supersonic flow over a con- 
figuration can be expressed in terms of distributions of source and doublet strength on the 
configuration surface. Except for the simplest of geometries, complete analytic determina- 
tion of the source and doublet strength from the integral equation defining the boundary 
conditions is impractical. To overcome this difficulty, the panel methods were devised. 

The panel method is basically a collocation method for satisfying the boundary 
conditions at a discrete set of points in order to evaluate a corresponding set of source and 
doublet strengths. The source and doublet distributions on the panel are defined in terms 
of the unknown values of the singularities at the centers of the panel and of neighboring 
panels by a system of spline type polynomials. The resulting integrals over the panels 
representing the velocity components and potential at the control points on the panels 
can be integrated in closed form, and imposing boundary conditions yields a set of 
simultaneous equations to be solved for the singularity parameters. When these quantities 
are known, the flow field velocity and pressure can readily be computed. 

An example of a paneled wing and body combination is shown in figure 1 1. 
A sufficiently fine set of grid points is defined over the surface. By joining the grid points 
with straight lines, we form the basic set of quadrilateral panels, which in some special 
cases reduce to triangles. Generally, these quadrilaterals are not planar. One can easily 
show that the midpoints of the four sides of the quadrilateral lie on a plane which we shall 
call the average plane of the panel. In figure 12 the vector representing the side P6 - P5 
of the inner quadrilateral is given by 

Similarly, the vector of the opposite side P7 - PS is 

We see that the sides are parallel and PgPgP7PS forms a parallelogram. Following the sub- 
sonic method of Johnson and Rubbert [ 31, the earlier supersonic program utilized 
quadratic doublet and linear source distributions prescribed over the projection of the 
panel onto the average plane. Thus, the panels inducing the flow did not form a continuous 
closed surface for non-planar configurations, but contained gaps between the panel edges. 

Essentially, two boundary conditions are required at the center point of each panel 
and associated with each’ point are the values of the source and doublet strength to be 
determined. The six coefficients of the quadratic for the doublet distributions and the 
three coefficients for the linear source distribution on each panel, are determined by least 
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square fit with the unknown values of the doublet and source strengths at the centers of 
the panel and of neighboring panels. A system of splines then defines the doublet and 
source strength distributions over the surface of the configuration, although, they do not 
have the continuity usually associated with conventional splines. 

Because the spline tit requires surfaces with a certain degree of smoothness, complex 
configurations such as wings and bodies are divided up into networks. At junctions of 
networks, discontinuities in curvature and slope are allowed. To match doublet strength 
across network edges, additional control points at panel edges are provided. Mathematically, 
a network is a rectangular array of panels over which a set of control points, with appropriate 
boundary conditions, and source and doublet parameters are defined to provide a determinate 
system. Figures 13 and 14 schematically show control point and singularity locations for 
the source and for the doublet networks with analysis boundary conditions, respectively. 
Figure 15 shows the location of the control points and the singularity values for the doublet 
design network used in the single planar example described in section 12. When the flow is 
required over a known body shape, source and doublet strengths defined at these same points 
determine the source and doublet distribution over the entire network by the spline system. 

The three parameters to define the source strength and the six parameters to define 
the doublet distributions are not sufficient to ensure complete continuity of the source and 
doublet distribution at panel edges. As shown in section 6, discontinuity in the doublet 
strength induces higher order singularities in the flow than a similar discontinuity in source 
strength. The six parameter doublet distribution can be made to agree at panel corner points 
only or can be made continuous only in a least square sense across panel edges. Some 
excellent results using this spline were obtained and are discussed in section 12. However, for 
some paneling of certain configurations, the effects of the panel edge gaps and slight dis- 
continuity of doublet strength were found to build up and lead to instability in the solution. 
To distinguish this earlier spline system from the spline system to be described in the 
following, we shall call it the six parameter spline. 

Ideally, the doublet strength at network edges should be as strictly continuous as it 
is at panel and subpanel edges. However, the doublet strength can be made almost continu- 
ous for the six parameter spline by moving the control points an infinitesimal distance away 
from the boundaries into the panel and using the infinite singularities of the aerodynamic 
influence coefficients as shown in section 6. This approach fails for supersonic leading 
edges where only finite discontinuities occur. To match the doublet strength at supersonic 
network edges, incompressible aerodynamic influence coefficients are used for all network 
edges. The inconsistency is only apparent because the role of the aerodynamic influence 
coefficient is to make the doublet strength and its conormal derivative nearly continuous. 
For greater details on the six parameter spline, the reader is referred to Johnson and 
Rubbert [31. 
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4.2 IMPROVED NINE PARAMETER DOUBLET SPLINE AND IMPROVED PANELING 
TO OBTAIN CONTINUOUS DOUBLET STRENGTH AND GEOMETRY 

To establish a panel system which is a completely closed polyhedral surface, we divide 
each quadrilateral panel into 8 triangles. We have seen that the 4 midpoints of the sides of 
the panel lie in a plane, and the lines joining these midpoints actually form a parallelogram 
(see fig. 12). Each corner point, together with the midpoints of the lines meeting at that 
corner, form a triangle which has a common edge with the parallelogram. Thus, the con- 
ventional quadrilateral panel can be divided into 5 planar surfaces whose edges are contiguous 
and which are contiguous with the edges of adjoining panels. When the center parallelogram 
is divided into 4 triangles, the doublet can be made continuous across all panels and sub- 
panel edges by using the nine points in figure 12 to define a separate quadratic distribution 
in each subpanel. Because of this feature, we shall call this splinal system the nine parameter 
spline. Since the center of the panel where values of the source and doublet strength are 
defined is the common vertex of the four panels, the control point at which the boundary 
conditions are applied must be displaced from the center to avoid numerical difficulties 
with the panel influence coefficients which are indeterminate at panel comer points where 
s = sm = z = R = 0 (see, for example, equations (Al 5) and (Al 6)). Since the nine parameter 
spline renders the doublet strength continuous and there are no gaps in the edges, the 
aerodynamic influence coefficients can be simplified by eliminating all line integrals of the 
doublet strength around panel edges as these integrals will cancel in the summing of the 
aerodynamic influence coefficients from the adjacent panels. For greater details in the 
construction of the spline, refer to appendix C. 

The nine parameter spline insures continuity of doublet strength everywhere within a 
network. In the latest version of the program, the doublet is made strictly continuous also 
across network edges, by appropriate boundary conditions at the control points on the 
network edges (see fig. 14). Consider two networks, the second lying downstream of the 
first. On the downstream edge of the first network, regular downwash boundary condi- 
tons are applied to determine the values of the doublet strength. These values of the 
doublet strength are then used to define the doublet strength at these control points common 
with the adjoining downstream network. By means of the spline system, the doublet 
strengths are defined at the panel corners along the network edge in terms of the values at 
the network edge control points, and are restricted to have the same values for both net- 
works. Since there are three points on each panel at which the doublet strength is defined 
along the network edge and a cubic spline is used, the doublet strength is then made con- 
tinuous on all points of the common boundary between the two networks. 

Since some of the example flows discussed in section 12 were calculated using less 
strict matching of the doublet strength, it is worthwhile, therefore, to discuss this indirect 
method of nearly matching the doublet strength across network boundaries. In section 6, 
an explanation of how the singularity in velocity from the line integral of doublet strength 
across network edges is presented. Since these line integrals have been eliminated from the 
aerodynamic influence coefficients used in the 9 parameter spline, a simulated incompressible 
vortex was added to the conventional mass flux boundary conditions. To achieve a match 
of the doublet strength across network edges, the boundary points were moved an infinitesimal 
distance into the network and away from the panel boundary where the influence coefficients 

35 



become infinite like T/r where r is the distance from the edge and y = A,u is the vorticity 
magnitude. Thus, at two points on opposite sides of the network boundary we have 

(WI +U) l $1 +(pl -p2j/rl= 0 

(W2 + q l &+(kq-~l)/q=O (4.1) 

where rl and r2 are distances from the points 1 and 2, respectively, to the network edges. 
These equations may be combined to give 

and 

rI (VJl +U)=fi+r2 (W’2+U).$2=0 (4.2) 

Hence, the doublet strength is nearly matched and mass flux boundary conditions are 
satisfied in a weighted average. 

4.3 COMBINED SOURCE AND DOUBLET PANELS 

On aircraft bodies and wings without lift, it may be possible to find the linearized 
solutions with sources alone on the surface. For such closed configurations there results 
both exterior and interior flows. When the flow is supersonic the interior flow may cause 
build-up of disturbances which propagate along Mach lines and are reflected from the 
surface in the downstream direction as shown in figure 16. These waves may produce large 
pressure disturbances on the exterior of the surface. Such interference waves can be 
eliminated by combined source and doublet paneling on the configuration. 

In section 3.8 we showed that when the source strength at the control points is set 
equal to -8 n 8, i.e. 

0=-u.; (4.3) 

and the boundary conditions 
Cp=O (4.4) 

are prescribed at points on the inner boundary, the boundary conditions 

W&-U.:: (4.5) 

result on the outside surface. Furthermore, the interior perturbation flow is zero, 
therefore eliminating the interior waves and the resulting disturbances on the exterior 
surface. 
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The application of boundary conditions in equations (4.3) and (4.4) on the surface of 
a flow-through nacelle will only work on an isolated nacelle in supersonic flow where there 
is no incident perturbation flow, for which 9 is automatically zero on the inlet surface. 
When a nacelle is situated in the region of influence of a wing, the inlet can be closed by 
means of super-inclined panels, which absorb or cancel the incident flow. Boundary 
conditions can only be applied to the downstream side of the superinclined surface; and to 
eliminate the incident perturbation flow, these boundary conditions, as explained in 
section 3.6, are 

It is also possible to represent a jet exhaust by terminating a nacelle with a super- 
inclined network. For this case the normal mass flux would be prescribed, namely, 

iv . :: = f($) 

The jet exhaust cannot be represented exactly, since the issuing jet has the same total 
head as the free stream flow because it satisfies the same differential equation. A convenient 
second boundary condition on the exit surface is $ = 0; and to match doublet strength a 
trailing doublet wake must be included. The shape of the sheet is not known but it may 
be approximated by a cylinder. 

Thin wings can also be represented by sources and doublets distributed over the planar 
planform. The thickness distribution is represented by sources, while camber shape (or 
angle of attack) is defined by doublets. Examples of cambered wings and flat plates at 
angles of attack and of symmetrical thick wings are presented in section 12 along with 
comparison with exact linearized solutions. 

4.4 EFFICIENT COMPUTATION OF THE INFLUENCE COEFFICIENTS 

The influence coefficients were derived in such a way that they give valid results when 
all or part of the panel edge lies outside the zone of influence of the control point. However, 
since their computation is fairly costly, considerable economy in computation is achieved 
by using a subroutine to test whether a panel is in the zone of the given control point and 
eliminating computation of the influence coefficients for those panels lying outside. The 
first test is to find out if any comer of the panel is within the upstream Mach cone from the 
control point by computing the square of the hyperbolic distance from each comer. If it 
is positive for any corner, then computation of the influence coefficients is carried out. 
If it is negative for all corners, then a further test is made to see whether any edges cuts the 
Mach cone. If so, then the computation of the panel influence coefficients is carried out. 
If not, then the program proceeds to the next panel without entering the influence coefficient 
subroutine,.unless the panel happens to be in a superinclined network. For superinclined 
panels, a further test is required to find whether the intersection of the Mach cone with the 
panel lies entirely inside the panel. 
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A further economy in computation is achieved by recognizing that some terms of the 
influence coefficients are linear combinations of a smaller set. Also, since the terms such 
as equations (Al 5) and (Al 6) are evaluated at the end points of the edges, the inverse 
tangents and logarithms from the two endpoints of each edge can be combined, requiring 
one half the necessary entries into the arc tangent and logarithm subroutines, which are 
costly in computing time. 

For panels far away from the control point and lying well within the Mach cone, far 
field expansions of the aerodynamic influence coefficients may be used. Since these are 
algebraic in form they require less computing tune than the near field aerodynamic influence 
coefficients. 
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5.0 AERODYNAMIC INFLUENCE COEFFICIENTS FOR 
SUBINCLINED DOUBLET PANELS 

To represent the aircraft configuration with sufficient fidelity by means of the simple 
panels described in the foregoing section, it must be divided into panels sufficiently small 
that the curvature of the panel is small in relation to the panel’s smallest dimension. The 
panel shape can then be represented by a simple second degree polynomial. Linear distri- 
butions of source strength and quadratic distribution of doublet strength are utilized 
enabling the contribution to the velocity potential from each panel to be integrated in 
closed form. 

To obtain the simplest form for the influence coefficients, we scale the variables 
according to 

(x,Y,z) = (xc,B~c&c) 

where xc, yc, c z designates the compressible coordinate system, so named because xc is in 
the direction of the free stream velocity. This transformation eliminates the factor B from 
the hyperbolic distance RB. For the six parameter spline, we represent the subinclined 
panel as a small quadratic departure from the plane z = 0 and integration is performed over 
the projection on the plane z = 0. For the nine parameter spline, the subpanels themselves 
are planar and are assumed to lie in the plane z = 0. Choosing the subinclined panel as the 
z = 0 plane also simplifies the conormal derivative to a/az, further simplifying the integral 
for the doublet. For subpanels or panels not lying in the z = 0 plane, the influence 
coefficients are transformed by coordinate transformations which are discussed in section 10. 

The integration over the panel may be accomplished by combining the integrations of 
regions bounded by a panel edge, two lines of constant y and the intersection of the Mach 
cone on the plane z = 0 as shown in figure 17. This can be seen by considering figure 18 
for a panel which lies wholly within the Mach cone. The integration over the area between 
lines AB and BC are added together. Since CD and DA are taken in the reverse order, the 
integration over the area between these two lines are subtracted from the areas under AB 
and BC. The area remainding is the desired area of the quadrilateral ABCD over which 
the integration is required. The integration over the region in figure 17, yields a quantity 
to be evaluated at the endpoints of the panel edge. The induced flow from the panel 
is then computed by evaluating the function at the endpoints of each side proceeding 
around the panel in a counter-clockwise direction. 

Let the panel surface be defined by 

F (~,Yo,zo) = zo - i’(XoJ’o) = 0 

Then to the first order in <, the normal to the surface becomes 

nzO = 1 + O(S*>, nxo = - Sx, + O(r*), n YO = -rye + o(s*) 

(5.1) 

(5.2) 

where rx, = aglaxo and cyo = arta,, . 
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We shall consider the,doublet term first. Thus, with $ = l/R, where 

(Y-Yo)*qz-zo)*~ equation (3.43) becomes 

9 * 
1 

4=x ff pa$/an,ds = Z$ 

SW 
J-/l -- g+r aG x0 ax0 

syo as /J cxo, yo) dXOdY0 
> 

SW 
,(5.31 

where ds = dxOdyO/cosSZ = dxOdy0 + O({*), a/an, = (- nx, ny, n,) l v , G = (n,, ny, nz) 
is the normal of the wing or body surface, and SI is the angle of projection of the element 
of the area on the average plane. The sign of equation (3.43) has been changed to conform 
to the general practice of defining the body and wing normals outward into the fluid, while 
the development of the general theory in section 3 is based on an outward normal from the 
fluid region. 

Since the finite part contains no terms from differentiation of the limits of integration, 
we may move the differentiation outside of the integral sign by noting that 

w - a+ ati _ a4 w _ g 
ax0 --ax,ayo ---’ - 

ay aZ0 

Therefore, for the velocity potential we obtain 

@=-2a az 
I a J’* tkjQ(yo) fl (Xo9;~dx0dY0 

y1 

with 

The finite part symbol is removed when integration is performed before differentiation 
since the integral is then made convergent. Here 

(5.4) 

(5.5) 

C = 5 (x0, YO) and xo = 5 (YO) 
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is the equation of the projection on the plane z = 0 of the intersection of the Mach cone 
with the panel surface. The region of integration is shown in figure 17. We simplify the 
Mach cone singularity by introducing a new variable for x0. Let 

x0 = f(Y0) - t = to-t 

and assume a straight edge 

x0=x1 + (Yo-Yl)/m 

where m = 
t = 0 repres(ents the 1 

y2 - yl /(x2 - x1) is the slope of the panel edge. By this transformation 
ach cone bounda.ry. The hyperbolic distance becomes 

R, = J(x-F;o+t)2-(y-yo\*- [z-S(Eo-tJo)l * 

Expanding in the form 

C(Eo - t, YO) = P(E0. YO) - Kx (to* YO) + t*Ld* 

and using the condition that 

&to)* - (Y-YO)2 - [z-s.(eot YO)-p = 0 

yields for the hyperbolic distance 

where 

a1 = 1 + (Z-50)Sxx~I +ztxx+o(r*) 

b 1 = 2 [(MO) -Go,] 

50 = T(Eo, YO) 

(5.6) 

(5.7) 

(5.8) 
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To find the equation for the Mach line boundary we consider 

(x30) =A-= r-So/r + O(t*) 

or ijo = x - r + z{O/r + 0( {*) 
(5.9) 

where r =dm men r(t()~ YO) zS(x--Ty YO) + OCr2)- 

Finally retaining only first order terms in { yields for the potential 

* $ ‘* [x-x-r- (Yo-‘7)‘m+E1 

y1 

p (x-~;l,yO);dyO 

+ & f ‘* [ ‘-” -r-(Yo-Y1)‘m rx (x-r-t, $$;t, yOjdtdy0 

y1 

a 
-ay. 

x-x1 -r-(yo-ylJ ‘m { 
(5.10) 

where 

~1 = z{/r E2 = zrxx ~3 = z(Cx + S/r) 

al = 1 +e2 bl = 2(r-~3) (5.11) 

The integration of equation 5.10 is carried out in appendix B retaining only the first 
order terms in the epsilons and <. It was found that the contributions to the velocity by 
the first order terms have higher order infinite singularities near the Mach cones emanating 
from panel corners and hence, are not a true correction for panel curvature. Consequently, 
the influence coefficients for the flat panels only are used. Setting 5 = 0 in equation 5.10 
yields 

(5.12) 
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The integral may be simplified by introducing the following variables: 

Xm=X-Xl- (y-yl)/m, s=Y-YO 
(5.13) 

sm=xm + s/m 

Scaling the t variable by r eliminates differentiation of the singular part of the integrand 
allowing differentiation to be performed before integration. We obtain for the perturbation 
potential 

(5.14) 

Differentiation leads to 

s 

Y-Y* 
Sm/* (X-Sm, Y-S ds 

Y-Y] 

+g f ‘-‘* -s‘“-r Pxkr;C:y~(r+t)dtds 

Y-Y 1 

The integration with respect to t may be performed by expanding px in powers of t using 

J s,-r 
In (r, Sm) = 

tndt 

0 
d?VYG-) 

Hence 

(5.15) 
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where we have eliminated 12 and 11 by the recursion formulas in equation (A8). Finally, C#J 
is obtained by expanding /J about x, y and performing the integration with respect to s. 
Using the functions defined by equations (A4), (A5), (Al O), and (Al 2) leads to 

4 = -2 [ PQmO - I-CXWO - my Qm I+ clxx (WI im + z*Qmo>/* 

+ I-cxyw 1 + pyy (wm0 - z*Qmo) /* 1 (5.16) 

The variables zQmO and Qm 1 may be simplified by discarding those terms which depend 
only upon the corner point and therefore cancel when integrating around a panel corner. 
The simpler relation takes the form 

@Z--L 2w [PQI - I-~XZWO - py zwO/m + pxxz (wl Im+zQI)i* 

+ I-lxy zw 1 + ~yy z (wmo - ZQI) I*] (5.17) 

where zQmO has been replaced by the function QI defined in appendix A by equation (A19) 
and Qml by w,/m in equation (Al 8). We have also discarded the term ~10 from the func- 
tion So since it cancels when integration is performed around a panel comer. 

44 



6.0 PANEL EDGE SINGULARITIES FOR DOUBLET PANELS 

To investigate the singularities which result from discontinuities in doublet strength 
and its derivatives along panel edges, we consider the potential from the doublet distribu- 
tion in equation (5.17). The perturbation velocity vector then becomes 

v@ = - & [PVQI + QIVP - (CC, + vylm) v (zw$- zwov (px + py/m) 

+ (Pxx/*m + pxy + W*m) V(ZW I)+ Pyy V (ZXm WO - ~~41) I*] (6.1) 

The contribution to the velocity from a specific panel at a given point (x, y, z) on any 
panel is found by evaluating the functions QI, w0, and wl and their gradients at the endpoints 
of each panel edge going around the panel in a counterclockwise direction. For interior 
points in a network, the induced velocity from a single edge has contributions from ,the two 
adjacent panels. If the representations of /J on the two panels are equal at the panel edge 
then the term involving P in equation (6.1) cancels when the reference point approaches 
the common boundary. However, a jump in the doublet distribution or in its gradient at a 
panel edge introduces singularities in the velocity at the panel edge. To investigate these 
singularities, we study the behavior of vQI, v(zw0) , and v (zwl) as the point (x, y, 0) on 
the panel approaches a point on the panel edge. From equation (A33) for z = 0, we obtain 

where s,, s correspond to x-x 1, y-y 1 or x-x2, y-y2 for each side. 

Now x, may be interpreted as the coordinate measuring distance from the panel edge 
which is defined by x, = 0. The oblique coordinate is proportional to ym = s - s,/m. Thus 

VQI = (O,O, Ym/Xm dm (6.2) 

Onz=O, 

V(ZWi) = (0, 0, Wi) (6.3) 

For points close to subsonic panel edges, we have shown in equation (A3 1) that 

(6.4) 
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and from equation (A9) 

W] =- (6.5) 

Note that only a4/az is singular. Hence, substituting equations (6.2) through (6.5) into 
equation (6.1) yields for points near the subsonic panel edge on the panel 

4z = _ A.-{ p(x,y)y,/x, J&j2 - (pxm + Py) 1% Xm/ JI-mz + Ocl)) (6.6) 

The oblique coordinates associated with the panel edge represented by x, = sm - s/m = 0 
are defined by 

x’= (-ms, -ts)/ J1 -m* 

y’= (-ms+s,)/Jl -m* 

With these coordinates, equation (6.6) may be written 

$z=-$ {iv/x’ Js m* - s* -(aj.i/ad)i0g x’ + O( 1) ] (6.7) 

A discontinuity in p is seen to introduce a singularity of 1 /x’ as x’ goes to zero near 
the panel edge x, = x’ = 0, while a discontinuity in the conormal derivative ap/ax’ intro- 
duces a logarithmic singularity. As the panel edge approaches a Mach line in direction, the 
conormal derivative of p becomes the tangential derivative, and the 1 /x’ singularity reduces 
to 1 /Jx7;since y’ = x’. The continuity of 1-1 then eliminates both singularities when the 
panel edge is a Mach line. 

For subsonic panel edges these singularities furnish a means of enforcing continuity 
of p and of its conormal derivative at network edges by employing ordinary downwash 
boundary conditions near the edge of the network. Consider the boundary conditions at 
two very close points on opposite sides of the network edge. We assume linearized boundary 
conditions for simplicity in demonstrating the effect of the singularity. At point 1, we have 

aG/az = - & ([P] (xi, Yi) -P2 (4 3 Yijj Yi/XiRl 

+ Elxr +;, Y)) -Pan’ (xi , pi)] log xi + o(l)) = ww,i (6.8) 
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or 

[I-l] (xi , Yifl) - p*(xi 3 Yi )] Yi /Rl 

= [pl x~ cxi , pi j - p2x’l cxi , Y> p1 i0g XI1 - 2n x'] (azlax),; (6.9) 

where az/ax is the local streamwise slope of the wing and the subscribts 1 and 2 denote p 
as defined by the parameters associated with the two adjacent panels having the edge in 
common. The right hand side of equation (6.9) is negligible for x’ very small and we then 
approximate the condition 

PI’/-9 (6.10) 

at one point on the panel edge. 

At the second point on the other side of the panel edge, the continuity of p by equation 
(6.9) is satisfied to the order of x, log x,. Then the boundary condition at point 2 is 
dominated by 

2 [P] -1-12-J rr - 27r ($logx’ 

from which we have 

thereby enforcing near continuity of the conormal derivative of 1-1. 

We now consider @/az near a supersonic panel edge. For this case, derivatives of 
w0, wl , and QI vanish ahead of the Mach cone near the panel edge (they actually become 
imaginary); but w0, w 1, QI take on constant values inside the Mach wedge shown in 
figure 19. From equations (6.1), (A27), and (A30), we see that on the panel near the 
supersonic panel edge 

1 
&=-z;; [- (Px + r-l,/4 wo + ( Pxx/*m + I-lxy + ~yy/*m)wo + Pyy Xm WO/*] z=O 
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or 

#z= l 
4Jz I -~xshPy- (X,/2) [(bxx +*clxy + &ly) A/ (1-G) - Pyy] ) _ 

For the supersonic leading edge the coordinates along the panel edge and oblique or 
conormal to the panel edge are 

X’= (Sm - AS)/ J;-x2=X,I J;-h2 

Y’= (-XSm+S)/ Jl -X2 

Hence 

“~~-4 axI 1 i!+k + 0(x’) 

For a supersonic leading edge, the jump in the conormal derivative of the doublet 
distribution introduces a jump in the velocity conormal to the plane of the panel. 

In addition to the singularities on the panels near the panel edges, there are infinite 
square root singularities which occur on the Mach conesemanating from panel comers out 
into the flow field whenever the doublet distribution is not continuous at panel edges. 
From section A6 of appendix A, it is easily seen that the gradients of the functions have 
the hyperbolic distance R in the denominator and hence, become infinite on the Mach 
cone R = 0. If p is continuous these singularities are cancelled, providing the edges of 
two adjacent panels coincide. Although this is not readily apparent from the form of 
equations (6. I), it is easily shown in section 7 where the line integrals of the doublet 
distribution along panel edges are discarded in determining the potential and velocity 
components. 
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7.0 INFLUENCE COEFFICIENTS FOR SUBINCLINED DOUBLET 
PANELS NEGLECTING THE EDGE VORTEX 

It has been shown that jumps in the doublet distribution across panel edges introduce 
singularities in the velocity which propagate into the region away from the panel. The 
original six parameter spline provides a doublet distribution which is almost continuous 
across panel edges. Since the discontinuity is small, it would appear that the difficulty 
could be removed by arbitrarily eliminating the line vortex integrals from the velocity 
aerodynamic influence coefficients. This was quite successful in subsonic flow, but it was 
found that for supersonic flow even small discontinuities in the doublet at panel edges 
produced inaccuracies when the line vortex was omitted. For the nine parameter spline, 
the doublet distribution /.I is continuous and we can therefore simplify the aerodynamic 
influence coefficients by eliminating all terms involving line integrals of doublet distribution 
along panel edges. In the influence coefficients previously derived, these integrals are included 
but introduce no difficulty if the doublet strength is continuous along panel edges. In the 
following we derive influence coefficients for the flat panel in which line integrals along 
panel boundaries of the doublet distribution are eliminated. Consider the doublet distribution 
from one panel and the resulting velocity potential from one edge. This is given by equation 
(5.14) or 

1 
FZY az 

2 f ‘-‘I lsmir-l &.-;;;:-s)dtds 

Y-Y* 

Performing the differentiation yields 

The second term is’a line integral of the doublet strength along the edge. Hence, we discard 
it and obtain 

(7.1) 

(7.2) 
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The velocity potential is obtained by expanding c(~ in powers of r + t. Thus we obtain 

-r [px(x,y-s)(r+t) - /.txx(r+t)*] dtds 

r* Jto 

J 

Y-Y* 
Z-5 [ px(x,y-s) 4x/r* - pxx (r*Io + s&) /*r*] ds 

Y-Y 1 

where we made use of the recursion formulas for I, in equation (A8). After integration with 
respect to s, 4 becomes 

G = - & [PXPO - lIxyP1 - Pxx CzsO + pmO)L2j 

= - k [ ErxPO - Pxyp] - Pxx (ZXmWO - Z*QI + xmP0 + P 1 /m>] 

where P, = z 
/ 

Rsn dslr*. 

(7.3) 

The relation for I$ in equation (7.3) ultimately was not used since it involves the P, 
functions which are not required for the velocity components. The expression for C$ in 
equation (5.17) is valid for continuous /.L, introduces no infinite singularities for discontinuous 
II, and involves the same functions as the velocity components for continuous 1-1. Hence, it 
is more economical to use equation (5.17). 

For the perturbation velocity component or we have 

Gx=-& 1 
~xx f ‘-” djmer ;;T;E2r, 

Y-Y* 

+ J”’ Sm; 2 r-: ds 
Y-Y* sm r 

1 

Integration yields 

@x = - & { PxQmg - ~xywolm - ~~xwot 
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or 

@x = -& (~xQI - pxyzwo/m - Pxxzwo) (7.4) 

For the y component of the perturbation velocity, we have 

dy = $ 
Sml*x CXSSrn3 YSsjds _ + sm-r (r+t)p dtds XY 

Y-Y* mr* &p r* JLGZj- 

J sm-r + (r+t)P,(x-r-t, y-s)dt 
JtW 

(7.5) 
0 

The last term can be discarded since the coefficients of px, pxy, and gxx from this 
term depend only upon the endpoints and not on the panel edge slope m, and therefore, 
will cancel in the integration around a panel. The quantity ,ux in the first integral can be 

replaced by py and the derivative along the edge -$ p (x-sm, y-s) which will cancel when 
p is continuous on panel edges. We thus obtain 

& /1 (X-Sm, Y-S) = - 
PX (X-Smt Y-s) m - py (X-%-n, Y-s) 

and C#J~ becomes 

CY=-& 
s 

Y-Y 1 
smPy (X-sm, Y-S) ds 

Y-Y* r* &L 

Integration yields 

@Y = -2 ( PyQrno - ~-lxy Qmmo - PyyQm 1 + ~xy [QmmO - wo] 1 
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or 

1 4y = - 5 ( P,QI - ~x~zwo - ~yyzwolm} 

To find $z we consider the potential in the original form and obtain 

1 ti 
4z= 2n a,2 

6”’ d sm-r $x;;;,;-s)dtds 

Since the operator a*&* equals the operator a*/ax* - a*/ay*, we may write 

The first integral becomes 

g 
ax* 

/y,’ [ Sm-r p(x-;;;-t;)dtds 

Y-Y* 

a ‘-” =- 
ax 

If 

p (x-sm, y-s)ds 

Y-Y* &p- 

+ /,-‘1 $ sm-r /+$;;;;y-s)dtds 

Y-Y* 0 I 

/ 
‘-” = px (x-sm, y-s) ds 

&p 
+ P,,SO = PxWfJ -P xyw 1 - pxx CwmO - sO> 

Y-Y 2 

Since SO = sI0 + XmwO QmO - ZmO* 
endpoints, we get for the integral 

and ~10 may be discarded as it depends only upon the 

(7.6) 

=tixwo -PX~WI -~xx(yh+zQ~) (7.7) 
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The second term becomes 

$ J” / sm-r p(;+s)dtds =$ $ sm-r +-(x2;-s)dt i” 

Y-Y* 0 I 0 Y-Y* 

The last integral on the right hand side of the foregoing equation vanishes because of 
continuity of /.L on the panel edge and because its coefficients of px, etc. depend only upon 
the panel endpoints and hence, cancel in the integration around the panel comer. The first 
integral becomes 

a 
y2 yo-y 1 

) 
ay 

in “I --y- 9 YO ( dye 

Yl - (Y-YO) * -z* 

This integral vanishes because of continuity of 1-1. The remaining integral yields 

1 
Y-Y1 Py (X-s, > Y-s) ds 

-- 
m f &p 

+ pyyso (7.8) 
Y-Y* 

after discarding terms depending only upon endpoints. Finally, 4z becomes, after combining 
equations (7.7) and (7.8), 

4,=$ {P~WO-P~~WI -P~~(wI/~+zQI) 

+ pywo/m - Pxywmolm-l-lyy( So + w 1 /m)] 

Since wmO/m = XmWO/lll + w l/m* and from the recursion relation in equation (A9). 

x,wg/m = R - (I - m*)wl/m* 

we see that wmo/m may be replaced by wl since the term R may be discarded. Thus, we 
obtain finally 

pxwo + I-lywO/m - *l-lxyw 1 

-P~~(wI/~ +zQI) + +y(zQr- wrno)) (7.9) 
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8.0 AERODYNAMIC INFLUENCE COEFFICIENTS 
FOR SUBINCLINED SOURCE PANELS 

From equation (3.42) the velocity potential for the source distribution is given by 

0(x0, YO) dxodyo 

(x-q)) 2 - (Y-Y()) 2 - (v32 
(8.1) 

where z. = l(xo, YO) is the panel shape, assumed to depart only slightly from the plane 
z. = 0. The sign of equation (8.1) was chosen opposite from equation (3.42) because we shall 
use a normal outward from the wing or body into the fluid instead of outward from the fluid 
region as used in the theory of section 3. Introducing the variable t as in the doublet potential 
for integration between an edge and the Mach cone in figure 17, we obtain the integral 

1 
Y2 

@J=g 
/s 

x-x l-r- (y O-y 1) /m+e 1 
u (x-r-tfe 1, y0) dtdy0 

Yl 0 d+FF) 
(8.2) 

where al, b 1, and E 1 are given following equations (5.8). This is easily seen by comparison 
of the first integral of equations (5.5) and (5.10), respectively. 

The integration of the velocity potential including all first order terms in panel curvature, 
is described in appendix B. Since the terms related to the curvature introduce higher order 
singularities, we utilize only flat panels in the supersonic panel method. Setting { = 0 in 
equation (8.2), we obtain 

@=s 
l fy-y1 a’--’ 

o(x-r-t,y-s) dtds/ Jtt+2r) 
Y-Y2 

Since (5 is linear, we have 

u (x-r-t, y-s) = (5 (x-r, y-s) - u,t 

and I$ becomes, after integration with respect to t, 

1 J Y-Y 1 

@=z [u(x-r, y-s)10 - ux 11-j ds 
Y-Y2 

(8.3) 

where In is defined in equations (A8) and (Al 4) in appendix A. 
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Expanding u further yields 

1 
J 

Y-Y 1 
@=K [ u(x,y-$10 - u,R 1 ds 

Y-Y2 
(8.4) 

where we made use of the recursion formula for 11 in equation (A8) of appendix A. With 
the functions defined in equation (A4) of appendix A, the velocity potential finally takes 
the form 

G = 2 [o(x,~)So - uxRo - oy % 1 (8.5) 

where the functions S, and R, are defined in equations (Al 1) and (A12) m appendix A. 

The velocity potential can be simplified by dropping all terms in SO, Sl which depend 
only upon the endpoints and, hence, cancel in integrating around a panel corner. This leads 
to 

@ = & { o(X,Y) (Xm WO - zQI)- ox [ (Xm2 - Z2)W0 

+XmWl/m]P- uy (xmw 1 - z2w0/m) 12 ) (8.6) 

The velocity components are found by taking the gradient of $ in the form of equation 
(8.5), namely 

“I$= 73 vuso+u~So-uxvRO-oy~Sl~ (8.7) 

From equation (A24), 

"So = (~~10 (r,sm-r) - we/m, - ZQmo) 

This may be simplified by discarding terms depending only upon s, s,, and z.and using 
equation (A20). Hence, 

vso = (~0, - woh - QI) 
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Similarly, with the aid of equations (A24) and (Ala), we have 

vS1 = (WI, - wl/m, - zwo/m) 

VRO = (wmo, - w&m, -ZwO) 

This may be further simplified by noting that 

WmO/ITl = x,wg/m + W 1 /m2 

and, from equation (A9), 

Discarding R, then yields 

wmo/m = R - (l-m2)wl/m2 

Finally, we obtain the following perturbation velocity vector contributed by one panel 
edge when evaluated at the endpoints s = y - y 1 and s = y - ~2: 

v@ =+y Nx,Y) (~0, - we/m, -Q1)-ux (zQI+wl/m,-WI,-zwo) 

- uy (W 1, ZQI - WmO, - zwo/m) 

On the plane z = 0 which represents the panel, we have 

adaz = - u(x,Y)Q~/~T = f u(x,yy2 

when the point x, y lies between the ends of the panel edge, and 

a$/az = 0 

outside of this region. This is the basis of applying the analysis boundary conditions for the 
planar wings. The difference between the upper and lower slopes is seen to be 

a$+/az - a$-/az = U(X,Y) 

and the source panel represents the thickness distribution for the planar wing. 
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9.0 AERODYNAMIC INFLUENCE COEFFICIENTS FOR 
SUPERINCLINED PANELS 

9.1 VELOCITY POTENTIAL FOR SOURCE AND DOUBLET PANELS 

We have seen that to represent solid surfaces, doublet and source panels must be inclined 
at angles less than the Mach angle. Singularity surfaces for panels at angles with respect to 
the free stream greater than the Mach angle do exist theoretically, however. These are useful 
for closing inlets of jet engines and representing boundary conditions at the exit of a jet 
engine. The intersection of the Mach cone with superinclined planes are circles and ellipses 
and the integrals of the aerodynamic influence coefficients over a panel must be computed in 
a somewhat different manner than for the subinclined panels. We shall assume that the 
panel is aligned normal to the free stream direction. All other inclinations can be treated by 
the use of a rotation of coordinates and an oblique transformation, which is discussed in 
Section 10. 

The region of integration of the influence coefficients has several special cases. Figure 
20a shows the intersection of the Mach cone lying wholly within the panel. No edge or corner 
is involved in the computation and the velocity potential and velocity take on their simplest 
form. Figure 20b shows a Mach cone cutting one side of the panel, but all comers lie outside 
the domain of influence. Figure 2Oc shows one corner of a panel lying inside the intersection 
circle of the Mach cone. The potential contributed by any panel can be computed by adding 
and subtracting the integration over the three basic areas illustrated in figure 20. Consider 
figure 20d. The integration over the panel may be found by subtracting, from the basic 
integration over the circle, the integral over the area bounded by an arc and by a line cutting 
across the circle as shown by the three sides as extended in figure 20d. The triangular region 
formed by extending the two sides of the triangle must then be added since it is subtracted 
twice. 

Another approach is to use polar coordinates in the integrals. By this means it is 
possible to reduce the integration over a panel to a contour integral over the edge of the area 
common to both the Mach cone and the panel which we shall designate by C (see fig. 20). 

To evaluate the potential for the source and doublet distribution over a panel, we consider 
the fundamental source potential from which we can obtain the doublet potential and the 
velocity components by differentiation. This may be expressed in the form 

2a@, = 
f 

hfdndt , R,2 = x2 - (77sy)2 - (542 
S 

z 

Now the singularity distribution ~1 expanded about the control point x, y, z, becomes 

I-( h3‘) = P(YJ> + Pyh-Y) + bzK-z> + Pyye?-Y)2/2 

(9.1) 

+ PyzkY M-z) + Pzz(W2/2 
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This may be written in vector notation as 

P~<)=c~+vP. Rl +Rl=v VP. Rl/2 (9.2) 

wherev = alay, a/az operates only on P and Rl is the vector (7 - y), (f - z). Substituting 
equation (9.2) into equation (9.1) yields 

RI 123 dwWR, (9.3) 

now RI/R, = -V’R, where?’ = a/an, a/a{. Substituting into equation (9.3) yields 

27V#Js = 
$[ 

P/R, - VP. v ‘R, -+Rl . v VP. v IRS] dndr 
Lx 

= v.-wRs/2-v’. (vpRS) -;I+. (Rl .v VPR,)] dvd{ 

We now apply the divergence theorem to the last two integrals and obtain 

+ v . v uR/2] dqd{ - 
s 

fi= vp R,dQ- 
f 

Rl . v VP. :: R,dQ/2 (9.4) 
Q cx 

where Cz is the contour of Z, the surface of the panel enclosed in the Mach cone, and 4 is 
the outward normal to the contour lying in the plane of Z. 

We now evaluate the integrals in equation (9.4). Since P is constant with respect to the 
variables of integration, the first integral becomes 

P LleK d0 6’““’ Jx& ,r2=h-Y)2+(t-z)2 
K 

‘I.c g jyK [x-JzqGGl d* 
K 

s 

OK 
=2nCg~x-p~ HK(We 

K OK-1 
(9.5) 
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where HK(e) = Jz Co = 1 if the.point y, z is inside the panel, and CO = 0 

for points outside. Similarly, the other volume integral becomes 

v- v/l 
J- 

R,dqdS/:! = ( v l v 4.2) z 
z 

K ll” jrK(‘) JmrdrdkJ 
0 

=(v* v/J/2) 2 TV f eK [x3 - HK3(8)] de/3 

v-v/J s R,dqd{/2 =$ v . VP 27rCOX3 - x j- eK HK3(f?)dB 1 (9.6 > 
K 8Ki1 

We have now reduced the potential & to a sum of contour integrals around the area E 
of the panel contained inside the Mach cone. Since R, (or H) vanishes on the cone, the line 
integrals reduce to integrals over the panel edges contained inside the Mach cone. 

We now evaluate the integration over each edge. For this it is convenient to use 
coordinates oriented normal and tangent to each panel edge as shown in figures 2 1 and 22. 
It is seen that the angle 0 in terms of these coordinates is given by 

0 = tan-* &)= tan-l (E-) 

from which 

d0 = - y, dS/r2 , r2 = ye2 + (S-zeJ2 
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The derivatives of p in the contour integrals of equation (9.4) become 

vp.fi=jl Ye 

and 

RI l v VP l t = (S-Ze)Pyeze -YePy,y, 

Then the last integral of equation (9.4) becomes, for each edge, 

s 

QK 
R.v vl.le;R,d!2= 

s [ 
(!TeZe) fly,z, - YepYeYe 3 RSdS 

cK 0 

QK QK 

= pYeZe Rs3/3 1 
0 

- YepYeYe J 
R&S 

0 

since R,2 = ~2 - ({-Ze)2 - Ye2 

We also have 

s 

*K 

J 

QK 
HK(B)dt = - ye R&/r2 

*K-l 0 

s 

*K 
HK3(8)de = - yeX2 

/ 

QK !JK 
R&T Rsd21r2 + Ye 

*K-l 0 / 0 

/ op. ;Hd!2=Ccye 
J 

pk 
R&6 

0 

Utilizing equations (9.5), (9.7), (9.8), and (9.9) in equation (9.4) yields the potential 

&=Co [PX+.~-~P/~] + c @Sk 
k 

(9.7) 

(9.8) 

(9.9) 

(9.10) 
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where 

Q Q Q 
2’@,k = Py, J R,d{/r2 + v . v I* R&/r2-Ye 

J 1 
R&t 16 

0 0 

Q Q Q 

- ‘Ye J 
0 

R~d-f + PY,z,Rs~I~ 1 + Yel*y,y, 
0 J- 

R&/2 
0 

Now since the doublet potential +d is given by differentiating C& with respect to x 
we obtain 

where 

2@dk = P XYe J 
Q Q Q 

dr/r2R, + v l VP dS-/r2Rs - XY e WR, 
0 

Q 

J 

Q 
dS/Rs + xpy,ze W 1 + Py,y,XYe 

0 
dWR, 

0 

We can express all integrals in terms of two basic functions. Now 

Ye J 
Q 

Rsdr/r2 = x2ye 
0 

/ 

Q Q 

dC/r2Rs - Ye 
/ 

dS/R, 
0 0 

(9.11) 

(9.12) 

(9.13) 

(9.14) 
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We define the basic functions as 

Q Q 

61= XYe 
f 

d{/r2R,, Gn = 
s 

SW/R, 
0 0 

(9.15) 

The functions Gi and Gn are integrated in section A9 of appendix A. 

The doublet potential then can be written 

$dk =& {- PQI - Wy,GO + xpyeze RI2 - XYePz,z, GoI2 + x2& (pyy + ~ZZ) /2 (9.16) 

since v . V/J is invariant with rotation of coordinates. 

The source potential is found from equation (9.10) by neglecting the quadratic terms. 
We obtain 

‘h=C()uX+ c @Sk 
k 

where 

&k = U XtjI - uYe [(x2-ye2-Ze2)d0 + 2z,%l - z2] 

The functions %7 and %I can be expressed in terms of GO by using the recursion 
relations for Gn in section A9 of appendix A. This leads to 

@Sk = 0x61- uy, [ ( x2-ye2)Go + (S-ze) RJ I2 
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9.2 VELOCITY COMPONENTS FOR THE DOUBLET DISTRIBUTION 
WITHOUT EDGE VORTICES 

When the line integral of the doublet strength is discarded from the integration over the 
panel, the velocity vector is given by the formula 

J 
* 

2lrG = [::xv’~] x%J dqd( 
z: 

(9.17) 

where 

$ = l/R,, R,2= (l-x)2 - (q-Y)2 - (W2 

v’= a/at, a/aq, a+ay 

and 

G= - a/at, a/aq, ajar 

The asterisk denotes finite part of the integral in the sense of Hadamard [ 111, since 
the integral does not exist in the usual sense. Equation (9.17) can be written in the following 
form after expanding the triple cross product: 

We assume all of the surface Z lies in the plane x = 0. Then fi = (1, 0, 0), p = P (q, {), and 
we have for the x component of velocity * * 

.27rLl=- J v I/J. ;i: I,!/ dqdr = - s v ‘~1. v’$dqd< 
x 2: 

(9.18) 

where now, 

v’ = (alas, a/ag). 
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For the components lying in the plane of Z we have, since a/@ = - a/ax, 

Now equation (9.18) may be written in the form 

* * 
2nu=- s v’p. v’$dqd{=- / [v’. (v’p$>-0’0 VW] dqd6 

z I2 

Application of the divergence theorem to the first integral yields * * 
2nu=- s ’ op. fi$dQ+ / v’ . v’l.l$dnd{ 

CZ YE 

where fi now denotes the normal of the contour in the plane of the panel. To express the 
integral in a form which can be integrated without knowing the exact coefficients of p, 
we expand about the control point projection y, z and obtain 

/.o,!g = P(Y,Z) + CT) - YhJy + a - z)l*z + Pyyh - YPD + Eryz(q - Y) (!T - z) + PZZG - 73/2 

For the gradient we have 

v’p = [py -I; pyy(n - Y) + clyzG: z>] , [k, + Pyz(‘l- y> + PZZK - z>] 

or in vector notation 

v’p=(py+vpy. R1 , PZ+ Wz- Rl> 

where Rl =(rl-Y,6-Z) and v =(a/ ah alaz). 

We also have 

(9.19) 

(9.20) 

v’~.f;=~yny+~znz+ny~~y- Rl +nzVI*z- Rl 
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For straight edges, ny and n, are constants and can be moved inside the voperator to 
yield 

Gp. ~=pn+VPn’ R1 (9.21) 

also 

v’ . v’p = j.lyy +pzz=v.vp 

Equation (9.20) becomes, after substituting equations (9.21) and (9.22) 

J 

* 

27ru=- [Pn + Wn l RI] $dQ +V*Vl.l 

s 

$dwX 

cz: 
2 

Similarly, equation (9.19) yields 

a 27rv = z 
f C Py +wy l RI] +WS 

2 

a 2lrw=z 
.I- 

[pz + wz l RI] WwC 

c 

(9.22) 

(9.23) 

(9.24) 

(9.25) 

where integration is to be performed first. 

Except for the first derivatives with respect to y and z of p in equations (9.24) and (9.25), 
the integrals are expressed in a form independent of coordinate system. To evaluate the line 
integrals we introduce coordinates related to each edge. First, we perform one integration 
of the area integrals. 

J 
* 

$dqd{ = : 2 
zz 

k : / *eK / rK(e)nlrc19/,/~ 

*K-l 0 

(9.26) 
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where 8k and ok-1 are the angles, the kth edge of TZ makes with the Mach cone center y, z. 
Integrating equation (9.26) yields from equation (9.5). 

s * *K 
$dqdS = 2nCOx - ZJ HK(*) d* 

c K *K-l 

where CO = 1 if y, z lies inside E and 0 otherwise. 

Since Rl $ = -v’R,, equation (9.24) becomes 

Since p does not depend on q and {, we have 

Applying the divergence theorem to the second integral yields 

From equation (9.27) 

**K 
2av = /.ly s/ de/&@) 

’ *K-l 1 Y; -x J “PY . hndQ/Rs 

% 

(9.27) 

(9.28) 
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Similarly, equation (9.23) becomes 

1 
* 

HK(B)d* - s Ch + VPn l RI J $dQ 

cz 

The portion of the contour which are arcs of the Mach cone do not contribute to the 
finite part of the integrals since the integrand is infinite on the Mach cone. Restricting the 
integrations over the straight segments allows us to remove the finite part since now the 
integrals exist in the usual mathematical sense. Since R,2 = x2 - r2 , we can write 

/ 

*K 

s 

Q 
HK(e )de = - ye Rsd</r2 = - yex2 

s 

Q 
dl -+Ye 

0 r2Rs f 
Q 

*K-l 0 0 

= - x61 + yeGo 

Since Pn = Py, , 

f 
Q 

/ vp,, . RI tidQ = [ - YepYeYe + ( f-ze) py eze] &?I x2 - Ye2 - (f-z)2 
C sm 0 

= - Y&yeyezO - RSpYeZe 

Finally, the velocity components can be written 

u=xV.V&)-+~ Uk 
k 

V=~yco+z: Vk 
k 

W=/.lzcO+z Wk 
k 

(9.29) 

(9.30) 
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where 

ye Go - Y&zeze Go + py,z, R, + x&v. ~$27~ 

Vk = [ p,i?I - xpyy, ;() 1 /2n 

Wk = 

9.3 VELOCITY COMPONENTS FOR SOURCE DISTRIBUTION 

The velocity components from the source distribution on a superinclined panel are 
obtained by integrating the gradient of equation (9.1) or 

27r8=0 f NT) ,t)WwG c 
where v= a/ax , alay , alaz. 
It is convenient to separate the velocity vector into components u and VP, where VP is 
the velocity vector in the plane of C. We easily see that 

1 UC- a 
2n ax f MWK = $‘d -9 

where $d is the potential for the doublet after dropping the quadratic terms. Now VP may 
be written 

* 
=- J v’ (~$1 dwK + f V’ u$dqd{ 

Ix z: 

where V’ =(a/aq , a/a <). 
Applying the divergence theorem to the first term yields 

/ 

* 

2?rVp = - hnu(q ,{) $dQ+ vu 
/ 

WvK 

CC c 

(9.3 1) 

(9.32) 

(9.33) 

(9.34) 

(9.35) 
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Here we have used the property that u is linear. 

Now the curved parts of the contour make no contribution to the finite part. Restricting 
the contour integration to the straight segments allows us to eliminate the finite part since 
the remaining integrals exist. In terms of the coordinates ye, ze associated with the edge, 
the expansion of the source distribution u takes the form 

O(q 3 f) = dye 9 Ze) + uy, (O-Ye) + uze (tsze) (9.36) 

Then the first integral in equation (9.35) becomes, for each straight segment 

II Q 
- (U-ayeye) Gk 

/ 
d/x2 - ye” (t-z,) 2 - “C ‘k o / 

0 

= U-ayeYe) TO + ‘Jze Rs 1 ik (9.37) 

where functions Go and R, are evaluated at the endpoints of the side, or its intersection with 
the Mach cone. 

The second integral in equation (9.35) has already been evaluated in equation (9.27) 
and (9.29). The u component is found from equations (9.12) and (9.16) after dropping the 
quadratic terms. Hence, the velocity components take the form 

U = COU + c Llk 
k 

where 

Uk = [‘JQI - Xuy, 
Vpk = h”k [ peGye - u) i?o + uze Rs] /2n + vu (‘51 - ye’o) 12r 

(9.38) 

(9.39) 

and fik is the outward normal for the kth edge in the plane of the panel. 
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10.0 TRANSFORMATION OF VELOCITY COMPONENTS FROM 
LOCAL PANEL TO THE GLOBAL COORDINATE SYSTEM 

The influence coefficients for a given panel have been obtained in terms of local scaled 
panel coordinates. To find the contribution to the induced velocity on a given panel from 
all panels of the curved surface to be analyzed, we use a transformation from each panel 
coordinate system to the global system. For this purpose, we consider three basic coordinate 
systems: 

1. Reference coordinates (xr, y,, z,)chosen for convenience in defining the body surface 
grid on which the panels are constructed. 

2. Compressible coordinates (xc, yc, z c) in which the velocity of the free stream is aligned 
with the positive xc axis and, of course, 

3. The local scaled panel coordinate system (xp, yp, zp) 

10.1 TRANSFORMATION FROM THE REFERENCE COORDINATE SYSTEM 
TO THE COMPRESSIBLE SYSTEM 

It is frequently convenient on a configuration to use coordinates in which the x axis 
is not aligned in the free stream direction. We then must establish a transformation from 
this coordinate system to the system in which the compressibility scaling is applied. From 
the reference coordinate system xr, yr, zr, we apply a rotation of the velocity vector through 
an angle of yaw PC followed by a rotation through an angle of attack oc (see figure 23). 
Here oc and PC are not necessarily small. The first transformation in figure 23 is a rotation about 
the yr axis, Thus 

x0 = xr cos& + yr sin& 

yo = - xr sin& + yr cos& 

zo = zr (10.1) 

We then apply a rotation olc about the yo axis. This leads to the following transforma- 
tion to compressible coordinates xc, y,, zc: 

xc = x0 c0.q - zo sin&, 

Yc = YO 

zc = x0 sin+ + zo cosoc 
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Combining the results of the transformations yields 

XC = Xr CO-%+ COS& + yr COSCYc sin/Q + Zr sina, 

Yc = - Xr sin& + Yr COSp, 

zc = - Xr sina, COS& - Yr sina, sin& + zr cosaC 

On defining the transformation matrix { A, } equation (10.3) takes the form 

xr 

(xcp Yc, zc) = jAr) 0 Yr 

zr 

(10.3) 

(10.4) 

where 

cos(Yc cosp, 

(- 

c0.q sin& sinff, 

(Arl = - sir@, COSP, 0 

since, cosfl, - since, +nPc cosac (10.5) 

When local panel coordinates xp, yp, p z are related to compressible coordinates by 

XC 

(53, ypt zp) = (AC1 

0 

Yc 

ZC 

we have 

(‘~3 YPY ‘p) = {AC) (4) (10.6) 
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where {AC} is the matrix of transformation from the compressible coordinates to panel 
coordinates. Solving the set of equations (10.3) for xr, yr, zr in terms of xc, y,, zc yields 

xr = xc cosac co& - yc sin& - zc sinoc co@, 

Yr = Xc COWc sin& + yc CO.@, - Zc sina, sin& 

zr = xc sina, + zc cost+ 

and we see that 

and 

XC 

(XP yr, zr) = (Arm11 0 ~c 

ZC 

= 

- sir@, 

co& 

0 

- sinac cosfl, 

- since, sir@, 

CQSP, ) 

iAr-‘l iAce :I 

0 zP 

(10.7) 

(10.8) 

(10.9) 

The normal in the compressibility coordinate system is defined in terms of the reference 
normal by 

(A,1 $ =($l) l f;, A,(2). t, A,(3). $) (10.10) 

where Arci) is the ith row of the matrix {A, 1. The conormal in the compressibility coordinate 
system is 

&A,(1 1. 9, A,(2). h, A,(3) l fi) (10.11) 

where the plus sign holds for subsonic flow and minus sign for supersonic. 
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If we define the matrix ( B 1 by 

then the conormal in the compressible system may be expressed as a matrix product 

In the reference coordinate system the conormal vector ii, is given by 

iicT= {A,l’) {Bl {Ar) :: 

(10.12) 

(10.13) 

(10.14) 

where ii,T is a row vector. 

10.2 TRANSFORMATION FROM COMPRESSIBLE COORDINATES TO PANEL 
COORDINATE SYSTEM WITHOUT THE COMPRESSIBILITY FACTOR B 

IN THE PANEL SYSTEM 

For incompressible flow, the differential equation and distance are invariant under 
rotations about any axis, while for supersonic linearized theory, the differential equation and 
the hyperbolic distance are invariant under rotations only about the free stream direction 
(xc axis) and under any oblique or Lorentz transformation in other planes. It is convenient 
to introduce at this point the transformation from scaled coordinates to compressible 
coordinates; namely 

(xs, YS, zs) = (xc, BY,, Bz,) (10.15) 

We now consider a rotation through an angle 19 1 about xi, the streamwise scaled com- 
pressible coordinate axis. This becomes 

Xl = xs 

yl =y,cosel -z,sinel 

zl =yssinOl +zscOsel (10.16j 
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Introducing compressible coordinates into equation (10.16) leads to 

x1 =xc 

y1 =By,cosel -Bz,sinel 

Z = By, sine 1 + Bz, case 1 (10.17) 

We chose the angle 0 1 so that the normal lies in the y 1 = 0 plane (see figure 24). Then 

tan 8 1 = yc/zc = nyc/nzc (10.18) 

from which sin 0 1 = nyc/ vqq and case 1 = nzc/ vqq. 

The normal will be calculated generally in the reference coordinate system. Hence, we have, 
for the normal in the compressible system, from equation (10.10) 

nxC 
= A,(l). 2, n yc = A,(2). ?I, nz = A,(3). fi 

C 
(10.19) 

where A,(i) denotes the ith row of the matrix ii$t. 

For subsonic flow, we rotate the x 1, y 1, z 1 coordinates system about the y 1 axis and 
the transformation becomes 

x2 = x1 c0se2 - ~1 sine2 

Y2=Yl 

22 = x1 sine2 + ~1 c0se2 

(10.20) 

We chose 82 to make the panel lie in the 22 = 0 plane; then from figure 25 

tan82 = - zl/xl = nxs/JnR (10.21) 

from which 

sin02 = nxs and cos02 =dw. (10.22) 

Since the normal in the scaled coordinate system is related to the compressible system by 

nxs = B nxc/ B2nx 
C 
2 + nyc2 + nzc2 
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“ys = nyc/ B2nxc2 + nyc2 + nzc2 

% = nzc/ B2nxc2 + nyc2 + nzc2 

then 

2nxc2 + nyc2 + nzc2 

cod 2 = /nm / /B2nx: + nyc2 + nzc 

Since the vector B2n 
Xc’ c’ c 

ny n, is the conormal, we have 

sine 2 = Bnxc Fc 

(10.23) 

(10.24) 

(10.25) 

For supersonic flow we apply an oblique transformation in the x 1, z 1 plane. This has the 
general form 

Y2=Yl 

22 = rnlxl/Jq+ ZlIJn (10.26) 

For subinclined panels, we chose the coordinate 22 = 0 as the panel, then we dbtain from 
figure 25 

ml = - zl/xl = tan02 (10.27) 
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Now 

tan02= J+ =ml 

Since 

% - Bnx, 

“Ys - “Yc 

“zs - nY, 

(10.28) 

(10.29) 

we have 

from which 

and 

where 5, is the conormal given by 

xc 2,n nz Yc’ c 

and 

ii= n 
( Xc’ c’ c ny nz 

) 
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Combining the two transformations yields the following tranformation from compressible 
coordinates, xc, yc, zc to xp, yp, zp = x2, y2,z2, the panel coordinates for supersonic flow: 

(10.31) 

The determinant of the matrix of equation (10.3 1) is equal to B2. Solving for xc, yc, zc 
in terms of xp, yp, zp yields 

xc = x,/J-- mlzp/d--;;;;Z 

yc=-xpml sinel/B JEq+ypcos 1, 8 B+zpsinOl/BJq 

zc = - xpm 1 co&J 1 /B 47 - yp sine 1 /B + zp c&3 1 /B JG (10.32) 

For superinckined panels we choose ml so that x2 = 0 lies on the panel, then from 
equation (10.26) we get 

ml = - xl/z1 = c0se2 

ml =JJQ /Bnxc = ,/I -(A,(l) l G)2‘/ BAr(l)* Gc (10.33) 

from which 

and 

Since Irnl I< 1 wesee that 

l/B < nxc/,/q = tane2c 
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and the angle f32c between the panel and free stream must be greater than the Mach angle. 
The matrix and its inverse have the same form for both superinclined and subinclined panels, 
but differ in the calculation of the parameter m 1. 

For the sake of convenience in the combined program for both subsonic and supersonic 
flow, we make the transformation for subsonic flow and for the subinclined and superinclined 
panels take the same form. Hence, we must rotate the coordinates of the superinclined panels 
so that xp, yp are coordinates in the panel. Then the new panel coordinates are 

xP = 22 

yp=-Y2 

zP = x2 (10.34) 

The variables x2, y2,z2 correspond to x, y, z in the derivation of the aerodynamic .influence 
coefficients. Note that for super-inclined panels the value of m 1 is the reciprocal of the value 
for subinclined panels. Let m2 be the value for superinclined panels; then substituting equa- 
tion (10.34) and replacing m 1 by m2 = 1 /ml into equation (10.29) yields 

xp = xl/JrnF + mlz1lJmF 

yp=-yl =yl sign (1 -m12) 

zp = mlxl/JmT + zl/JmF (10.35) 

with ml defined by equation (10.30). When m 1 2 - 1 is replaced by 1 1 - m 1 2 1 then equation 
(10.35) holds for both subinclined and superinclined panels. Since for subsonic flow 

B2nxc2 + nyc2 + nzc2 = 6 l nc 

we find that the transformation from the reference coordinate system to the panel coor- 
dinate system in both subsonic and supersonic flows can be written in the form 

Xr-XO 

(xpy ypyzp) = jA21 jAl\ IArI yr-YO ( > zr - zO 

(10.36) 

(10.37) 
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where {Ar} is gi ven in equation (10.5), x0, yo, zo is the center of the panel and the origin 
of the panel coordinate system, 

0 

Bnzc/7 

Bnyc17 

and 

s Bnxc/m 

{A21 = 0 

7/m 

(10.38) 

(10.39) 

where s = -1 if the flow is supersonic and s = 1 if the flow is subsonic; 

7=,/R and B=,/= (10.40) 

The points defining the panel are required in the average plane panel coordinates. 
Similarly the corner points defining the triangular subpanels are also required in the local 
subpanel coordinate system. All these coordinates are computed using equation (10.37) as 
defined for the particular panel or subpanel. The projection of the curved panel on the aver- 
age plane is found by setting zp = 0. 

For supersonic flow, the quantity $ l Tic can be seen to be a test for sub- or super-inclined 
panels. If fi . ii > 0, the panel is subinclined if fi l ii = 0, the panel is inclined at the Mach 
angle; and if fi wciic < 0, the panel is superinclined. Pa%els inclined at the Mach angle are not 
admissible since the transformation to compressible coordinates breaks down. This can be 
seen by setting m 1 = 1 in equation (10.26). 

10.3 CORRECTION TO PANEL ELEMENT OF AREA IN SUPERSONIC FLOW 
DUE TO THE TRANSFORMATION FROM GLOBAL TO 

PANEL COORDINATES 

The influence coefficients are computed in the coordinate system of the panel inducing 
the flow. Hence the conormal derivative in the compressible direction and the element of 
area ds must be transformed. The factor from page 383 of Courant [ 161, Vol. 2, relating the 
surface panel element of area dxpdyp to ds is 

c 
a(xc3 y$ dxpdyp abcy 4 ah 4 

a (“P7YP) + 9~ a pp, yp) + “ZC a (xp, YP> 1 (10.41) 
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Evaluating the Jacobians from equation (10.32) yields 

ds= nxc ml/B + (nyc II 
sin@ 1 + nzc case I)], dxpdyp/B 43 

Substituting for m 1 from equation (10.30) and 0 1 from equation (10.18) finally gives us 

ds = dxpdyp/B m 1 -M nxc (10.42) 

for subinclined panels. For superinclined panels the area element on the panel is in the yp, 
zp coordinates and surface elements are related by 

ds = a (yo 4 nx a (ZCJ Xc) + n 
+ % a (yp, zp) 

a (xc, Yc) 
c a (YP, “P) 

dypdzp 
ZC a (yp, zp) 1 (10.43) 

Here we used the transformation in equations (10.3 1) and (10.32) instead of equation (10.34) 
through (10.39). Evaluating the Jacobians using equation (10.32) yields 

ds = nxc/B + ml (nyc C 
sine 1 + nzc cose 1)] dypdzp/B ,/G 

Finally, substituting equation (10.33) for m 1 and equation (10.18) for 0 1 gives us 

ds = dypdzp,B ,/Mw (10.44) 

for superinclined panels. 

The integrals involving the doublet do not need the area factor if the conormal deri- 
vative is replaced by the derivative in the panel coordinate zp for subinclined panels and xp 
for superinclined panels. For subinclined panels, the conormal derivative takes the form 

a+& = - B2nxcad/axc + nyc way, + nzc adaz, 

a+/an, = 
( 
- B2nxc axp/axc + nyc axp/ayc + nzc axp/azc 

> 
a@/ax, 

+ 
( - B2nxc aYp/axc + nyc aYp/aYc + nzc aYplazc > WlaY, 

+ 
( 
- B2nxc azp/axc + nyc azp/ayc + nz azp/azc C > 

a#/az, (10.45) 
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The coefficients of s and z are found to equal zero when the derivatives inside the 
P P 

parentheses are evaluated from equation (10.3 1) with t9 1 and ml determined by equations 
(10.18) and (10.30), respectively. Evaluating the coefficient of &$/az, yields 

and we see that 

and 

$-js=~ 
C P 

dxpdyp 

When the same procedure is applied to the superinclined panels we obtain 

~=BJCZQ$$ 
C P 

a$ an ds=- $ dypdzp 
C P 

(10.46) 

(10.47) 

(10.48) 

(10.49) 

Hence the area correction term need not be applied to the doublet integrals. 

10.4 TRANSFORMATION OF VELOCITY COMPONENTS 
TO COMPONENTS IN THE REFERENCE SYSTEM ’ 

The velocity components are computed in the coordinate system of the panel inducing 
the flow. In terms of the compressibility direction, the velocity components are found from 
the chain rule; i.e., 

w a4 axp I a$ 3 ) a$ a+ 
ax, = - axp ax, ayp ax, azp ax, (10.50) 

a$ a4 with similar relations for - and a~. Using equation (10.3 1) to evaluate the coefficients of 

ati ati 
aye 

a@ 
C 

-- 
axP 3 aYp 3 

and x yields 
P 
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a4 a$ 1 -=- a4 ml 
ax, axr Jw+ aZp J-2 

34 a$ m B sin9 
aye=- axp Ji-;;;;2 

a4 w mlB c&l a4 a@ 
aZ, 

=- B cOse 1 -- 
axp $Y7- aye B sine.* + azp Jm 

We see that this may be expressed in the form 

V,= {~T]tr~ 

(10.51) 

(10.52) 

where {AT} is the transpose of {A} , the matrix of equation (10.31). 

We now resolve the vector vc into components along the coordinate axes of the reference 
coordinate system. Thus 

V= {~~-li Vc= {ANT/ V,= {A,T) {AT) VP 

or 

(10.53) 

This formula is valid for both subsonic and supersonic flow. 
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11 .O FAR FIELD EXPANSIONS FOR THE 
AERODYNAMIC INFLUENCE COEFFICIENTS 

11 .l SOURCE AERODYNAMIC INFLUENCE COEFFICIENTS 

For panels lying wholly within and sufficiently far from the Mach cone emanating up- 
stream of the control point; far field expansions of the aerodynamic influence coefficients 
are feasible. These expansions are algebraic and are much more economical in computing 
time. Except for a few signs, the subsonic and supersonic far field expansions are identical 
in form and a single derivation of the far field aerodynamic influence coefficients is possible. 

It is convenient to represent the far field integrals in the compressible coordinate system 
rather than in the panel system. We shall translate the origin of coordinates to the center of the 
panel inducing the flow to simplify the analysis. Let P denote the control point- and Q be 
the location of the singularity point on the panel and the coordinates of integration. The dis- 
tance, or hyperbolic distance, is given by the scalar product 

-- 
where the scalar product [A, Bl is defined by 

-- 
[A, Bl = aicijbj 

and Cij is the matrix 

and B=Ji, s = 1 for subsonic flow and -1 for supersonic. 

To utilize sibscript notation effectively, we let 

(11.1) 

(11.2) 

(11.3) 

and 
p= (Xl, x2, x3) 

G= (Y], Y2, Y3) 
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The expansion of l/RB then becomes 

1 1 
-=--Y. - 

a* I 
RB Rc ++W axi axj R, 0 

-ly.y.y 
6 1 J 

-i YiYjYk [( h 3/Rc5 cikzj + cjkyi +cijyk) - 1 ‘STiXjXk/Rc7 1 
where Rc = [?, F]1’2 is the distance for subsonic flow, or hyperbolic distance for super- 
sonic flow, from the panel center to the control point and j;i = xjCij. Using the fact 
that yi~i = ;jiXi, we obtain 

1 - = ~(0) + ~iGi(l) + 3~i~j Gij(*) +%~i~j~k GijkC4) 
RB 

where 

G(O) = l/R, 

Gi( 1) = xi/R,3 

Gij(*) = 3xixj/Rc5 - cij-l/Rc3 

Gijk(4) = 15 XiXjXk/Rc7 - (3/Rc5) (c&-l xj + Cjk-'Xi + Cij-' Xk) (11.6) 

To compute the velocity vector we obtain 

(- Vp (l/RB)} k = - [&k (&) - yi si axk (&) ++ yiyj axi ~~j axk (&)I +. . . 

{-c-‘Vp (liRB)jk= Gk( 1) + ~iGik(*) +~~i~j Gijkc4) + . . . 

(11.4) 

(11.5) 

(11.7) 
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The source potential is given by substituting equation (11.5) into 

4 = - (l/o) J ods/Rg 

where w = 27i for supersonic flow and 47r for subsonic. We obtain 

&=-G(O)E(l)- Gi( 1 )Ei(*) - Gij(*)Eij(4) 

where 

E(1) = (l/w) J- ads 

E;(2) = (l/w) 
1 

cyids 

Eij(4) = (l/o) Uyiyj d s 

(11.8) 

(11.9) 

Similarly, the source velocity components are given by 

&=-$I avp (l/Rg)ds 

(C-1) v, =&j u[- {C-l) VP (l/RB)]ds 

(c-1) us = Gk(l )E(‘) + Gik(*)Ei(*) + Gijk(4)Eij(4) (11.10) 

The integration of the E integrals are performed in panel coordinates. The transformation 
of the y variables to panel coordinates is affected by 

?= (C)Y= (C) (A-l) (h~o) 

and the element of area is 

ds = J dE dn 
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where J is the Jacobian of the transformation from compressible to panel coordinates whose 
matrix is A. Since u = u. + uxE + u 

Y 
n, the Matrices E are products of the matrices relating 

UO’ 0x3 uv to the values of the source at panel centers of neighboring panels, of the matrices 

{C) ,{A? , and the moments 

p+l qn+l dEdn (11.11) 

where integration is over the panel. The development of the formulae is fairly straight for- 
ward but tedious and is omitted. 

11.2 DOUBLET AERODYNAMIC INFLUENCE COEFFICIENTS 

The doublet potential is given by 

s=& .pfi 1 CO vp (1 /RB) ds 

-&J- IFI, (C) [- {@I “p (l/RB)]ds (11.12) 

Since nc = f; (Bi , then Tc {Cl = CT { Bl {Cl = sB*:T . Here 

bi = 
sB* 0 0 

0 1 0 

0 0 1 

“T . and n IS a column vector. 

then 

4 = - Gk( 1 )Wk( 1) - Gki(*)Wki(*) - Gkij(4)Wkij(4) 

where 

wk(’ ) = (sB*/w) 
f Ccnkds 

wki(*) = (sB*/w) / Pnk ?i ds 

Wkijc4) = (sB*/w) 
f Wk YiYj ds (11.13) 
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The evaluation of the W matrices is carried out in a manner similar to the E matrices. 

The velocity components for the far field are evaluated with the line integrals of the 
doublet strength neglected. One can easily verify that in the second term of equation (3.51) 

B*(& - @/RB3 = - {Bl vp(l/RB) 

= - @I k\ [- (c-l) Vp (llRB)] 

{C-l) vp (l/RB) 1 (11.14) 

Substituting the equation (11 .I 4) into the second term of equation (3.5 1) yields, with the aid 
of equation (11.7), 

iJ, = $$-f (: Xvp) X [- {c-l1 VP (l/RB)] ds 

sB* =- 
w J- 

(G XVE.() X ~(1) + ~iGi(*) + +yivjGij(4) 
II 1 ds (11.15) 

vd = ~(1) XF(‘) + Gi(*) X~i:i(*) + Gij C4) XFijc4) (11.16) 

The sign of equation (3.51) has been changed since we are using a normal ?I into the fluid. 
Here 

F(1) = (sB*/o) 
J 

(i-i Xvl.c)ds 

F;i(*) = (43*/w) f (i XVp)yids 

Fij(4) = (sB*/w) f 6 XVP)Yiyjds (11.17) 

Again, the integration is over the panel. The F matrices are again products of several matrices, 
relating transformation to panel coordinates, relating the coefficients of ~1 to surrounding cen- 
ter panel values of doublet strength, and of the moment integrals Cm, in Equation (11.11). 
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12.0 DISCUSSION OF RESULTS 

12.1 SOURCE PANEL METHOD APPLIED TO CONES AND 
BODIES OF REVOLUTION 

The source panel method was first applied to cones and slender bodies of revolution. 
For a free stream Mach number of& figure 26 shows the pressure coefficient versus cone 
half-angle for zero angle of attack. The pressure coefficient agrees well with the exact solu- 
tion and begins to depart from the theory only for cone half-angles approaching the shock 
detachment angle. Figure 27 gives a comparison of the exact solution from references [ 171 
through [ 201 for the flow over 10” and 15” half-angle cones over a range of Mach numbers 
with the present method, and with the method modified to apply tangential velocity boundary 
conditions instead of tangential mass flux boundary conditions. Solutions with tangential 
velocity boundary conditions generally underpredict the pressure magnitude. The agreement 
with exact theory is very good for the 10” cone up to a free stream Mach number of 3. For 
the 15” cone, agreement with exact theory is excellent up to a free stream Mach ‘number of 
1.6, but drops rapidly for higher Mach numbers. The rapid drop in pressure occurs for near 
stagnation regions of the flow when mass flux boundary conditions are used. A modification 
of the present calculation to give better results in stagnation flow is presented in the section 
12.2 on elliptic cones, 

For a 10” half-angle cone at 5” angle of attack the source panel method with tangential 
mass flux boundary conditions using 36 panels around 180” of the cone axis is compared with 
the solution from tangential velocity boundary conditions and with exact theory of references 
[ 171 to [ 201 in figure 28. The velocity boundary condition under-predicts the pressure espe- 
cially on the high pressure side of the cone. 

Comparison of the pressure coefficient on an axially symmetric spindle computed by the 
linear source panel method with results from the exact method of characteristics and with a 
line source distribution solution is presented in figure 29 and the three methods are in good 
agreement. Here mass flux and tangential velocity boundary conditions would be expected 
to be in closer agreement, since the body slopes are small. Also shown on the graph are results 
from a constant source panel method using the same panel distribution. The present method 
with linearly varying source distributions is seen to yield better results. 

To test the stability of the source numerical method a spindle was paneled in a random 
manner as shown in figure 30. The resulting values of the pressure distribution at the control 
points of the panel is indicated by the dots in figure 3 1. Considering the extreme variation in 
panel size, we see that the agreement with the exact calculations is very good and that the 
numerical method is remarkably insensitive to panel shape and size. 

12.2 SOURCE PANEL METHOD APPLIED TO ELLIPTIC CONES 

Flows around non-axially-symmetric three-dimensional bodies in the form of elliptic 
cones were calculated using the source panel method. The second order theory of Van Dyke 
[ 2 1 ] was programmed and the pressure coefficient computed at the control points to compare 
with the source panel calculated values. Figure 32 shows the two pressure distributions on an 

88 



elliptic cone with a maximum cone half-angle of 14” and a ratio of minor to major axis of 
0.532 at a Mach number of fl Agreement is seen to be very good with the Van Dyke method 
yielding slightly higher values. Similar calculations are shown in Figure 33 for a maximum 
cone half-angle of 15”, a ratio of minor to major axis of 0.3 at a Mach number offl The 
agreement is excellent. For this case the source panel method gives slightly higher values on 
the flat side of the cone than the Van Dyke second order theory. Similar results are shown 
in figure 34 for a cone with a maximum half-angle of 18.4” and a ratio of minor to major axis 
of l/3 at a Mach number of 1.81. Figure 35 shows a graph of the pressure coefficient from a 
cone with a maximum half-angle of 30” and a ratio of minor to major axis of 0.2. Here, the 
panel method yields considerably lower pressure than the second order theory. 

For the cone of 30” maximum half-angle in figure 35 elliptic coordinates were used to 
obtain a finer paneling in the higher pressure region. For this paneling, a sharp dip in the pres- 
sure occurred in the region of maximum cone half-angle (see figure 36). This dip can be 
remedied by choosing the perturbation velocity vector v to be proportional to perturbation 
mass flux vector w by the relation 

V=W/p,withp=l-M*$,+... for$,<O. 

This equals the correct velocity to the first order in the perturbation potential o and when 
-@x gets large near stagnation points it gives better pressure results. The pressure distribution 
corrected by this formula using the isentropic pressure relation is shown by the triangles in 
figure 36. The pressure distribution is considerably improved, although the comparison with 
second order theory is not as good as for the more slender cones. 

Figure 37 compares the calculated pressures obtained by using mass flux boundary condi- 
tions with those obtained by prescribing zero normal velocity boundary conditions and with 
experiments. For this example, velocity boundary conditions yield better agreement with 
experiments (ref [ 221). The linear solution with mass flux boundary conditions overpredict 
the pressure particularly on the flat side of the cone. Furthermore, the Van Dyke [ 2 1 I second 
order theory tends to yield higher pressure as in the previous cases, than linearized theory 
with mass flux boundary conditions and, hence, also over preducts the actual pressures on 
elliptic cones. 

12.3 APPLICATION OF SOURCE AND DOUBLET PANEL METHODS 
TO PLANAR WINGS WITH LINEARIZED BOUNDARY CONDITIONS 

Source and doublet panels distributed on a wing planform were used to represent thick- 
ness and camber with linearized boundary conditions. Figure 38 shows the pressure coefficients 
for a yawed flat plate delta wing at angle of attack computed by the present method compared 
with the exact linearized theory solution in Jones and Cohen [ 231. Agreement is seen to be 
good. However, the discontinuity in velocity gradient on the Mach line through the apex can 
be represented even better by a paneling which uses the Mach line emanating from the vortex 
as a network boundary. For this case (not shown in the figure) the pressure was exactly con- 
stant in the region between the supersonic leading edge and the Mach line through the comer 
as the theory predicts. 
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The planar doublet panel method was tried on a wing of zero thickness with a parabolic 
arc camber profile described in figure 39. The pressure is in excellent agreement with exact 
linarized theory solution. Breaking the wing into networks bounded by Mach lines emanating 
from discontinuities in the wing leading edge allows for better representation of the infinte 
velocity gradient occurring at such Mach lines. 

Using the same parabolic arc profile wing, the targential free stream perturbation velocity 
calculated from the theoretical solution was applied as design boundary conditions to a section 
of the wing between the supersonic leading edge and a radial line passing through the comer 
with the subsonic leading edge as seen in figure 40. Analysis boundary conditions were applied 
to the remaining portion of the adjacent to the subsonic leading edge. The computed down- 
wash from the panel method is compared with the actual wing slopes in figures 40 and 41 along 
the two lines numbered N = 1 and 2 in the sketch. Figure 40 shows the greatest departure of 
the downwash from the actual wing slopes, and the match with actual slopes improves as one 
moves closer to the supersonic leading edge. It was found that the design method was unstable 
when the subsonic leading edge was included in the design network. However, these results 
represent only an initial attempt, and it is anticipated that these problems can be overcome. 

With the same planform as in figure 39 and a symmetrical profile described by the same 
parabolic arc, the pressure distribution was obtained by the planar source panel method. Com- 
parison with the exact solution is presented in figure 42. The calculated results are in excellent 
agreement with the theory. Using the theoretical pressure distribution in the form of the 
tangential free stream perturbation velocity component as design-type boundary conditions 
in this case, yielded a downwash distribution which was undestinguishable from the actual 
wing slopes. 

While using planar panels with linearized boundary conditions yields good comparison 
with exact linear theory solutions, a better comparison with experiment and with more exact 
supersonic solutions is obtained by paneling the wing surface and applying the exact boundary 
conditions of vanishing normal mass flux. Figure 43 compares the pressure distribution on a 
symmetric parabolic arc two dimensional airfoil by the present source panel method adapted 
for two dimensional flow with exact linear theory, the second order expansion (ref. [241>, 
and also with experiment. The present method with the pressure computed by the isentropic 
relation is in close agreement with second order theory on the upper surface and with experi- 
ment. The agreement on the lower surface is not quite so good but is still considerably better 
than linear theory. 

12.4 APPLICATION OF COMBINED SOURCE AND DOUBLET PANELS 
WITH POTENTIAL BOUNDARY CONDITIONS TO 

THREE DIMENSIONAL CONFIGURATIONS 

For configurations of irregular shape such as inlets, nacelles, and bodies, discontinuities 
in slope produce disturbances in the interior which reflect from the singularity sheet represent- 
ing the configuration surface. These waves on repeated reflection may build up in strength 
and affect the surface singularity distribution which will in turn, introduce perturbations in 
the exterior pressure. These perturbations are spurious in that they are not properlyrelated 
to physical conditions on the exterior surface where they occur. By using combined source 
and doublet paneling with both interior and exterior boundary conditions, the interior flow 
perturbations may be eliminated. Panel spacing requirements then depend only on the exterior 
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geometry as does the true physical flow, without further spacing requirement arising from 
interior reflected waves. 

For a closed body, this may be accomplished by setting the source distribution u equal to 

where cis the free stream velocity vector and fi is the outward normal to the panel. The 
doublet distribution is then found by setting the perturbation velocity potential $ on the 
interior surface equal to zero at the panel control points. 

A simple axially symmetric inlet was first analyzed by the source panel method. The 
pressure distribution along with the drawing of the inlet with its panel distribution is shown 
in figure 44. The result indicates that internal waves from the lip are influencing the pressure 
distribution on the outside of the nacelle. To eliminate the internal waves, a combined source 
and doublet distribution was applied to each panel. For this particular calculation, the 4 = 0 
interior boundary condition was replaced by the equivalent boundary condition of the 
vanishing of the normal component of the mass flux to the exterior surface. (Although the 
inlet is not closed, the $J = 0 interior boundary condition would work successfully for the iso- 
lated nacelle since 4 is identically zero on the inlet opening in the absence of an incident 
perturbation flow.) The resulting pressure distribution, shown in figure 45, is much smoother 
and in better agreement with the Lighthill [ 25 I solution. 

The combined source-doublet paneling method with exact boundary conditions was 
also applied to the Carlson [261, [271 wing 2T. The paneling is shown in figure 46. The 
pressure distribution on both upper and lower surfaces by the exact isentropic formula is 
plotted in figures 47 and 48 for four of the spanwise locations in figure 47. Except in the tip 
trailing edge region the pressure distribution is smooth and compares favorably with experiment. 
The smoothness of the pressure coefficient indicates that with the combined source and doub- 
let paneling there is little buildup of internal waves. (As we shall see later, the tip region pres- 
sures are improved with the nine parameter spline.) 

12.5 APPLICATION OF THE CONTINUOUS DOUBLET SPLINE 
TO THREE DIMENSIONAL CONFIGURATIONS 

The doublet spline used on each of the preceding examples was developed earlier for 
subsonic flow and is described in reference [31. This spline utilized a quadratic distribution 
of the doublet strength over the plane panel obtained by projecting the four corners of the 
curved panel onto the average plane. The six parameters associated with the doublet strength 
allow the doublet strength either to be continuous across the panel edges only in a root mean 
square sense or to be continuous only at panel comers. D.&continuities in doublet strength 
and non-contiguous panel edges introduce vortex lines which in certain panel configurations 
may introduce large disturbances in the flow. The parabolic arc profile cambered swept wing 
of zero thickness used in figure 39 was analyzed with linearized boundary conditions but 
with different paneling. A portion of the wing paneling near the supersonic leading edge is 
shown in figure 49. The pressure distribution along the 3 strips of panels are plotted in 
figures 50, 5 1 and 52. The six parameter doublet spline results exhibit large oscillations in 
the pressure coefficient near the tip. These oscillations are seen to be eliminated by using the 
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improved panel method with continuous doublet strength and contiguous panels. 

It should be noted that the poor results from the paneling in figure 49 is over a small 
portion near the leading edge of the same wing shown in figure 39 on which such good results 
were obtained. This indicates a sensitivity of the six parameter spline solution to different 
paneling of the same wing. The limitation of the study to the region in figure 49 was chosen 
because a simple analytic solution for the parabolic cambered wing was easy to obtain. The 
complete cambered swept wing was also computed for the paneling shown schematically in 
figure 53a. AC and CE are special Mach lines along which gradients in the velocity or pressure 
are discontinuous. The pressure in the region ACE was very smooth and in agreement with 
theory. In this region all the panel edges are sonic or supersonic and small discontinuities in 
doublet strength across panel edges do not affect the downwash. The results in ECD were also 
good. In ABC a spike in the pressure occurred at a control point near the point B. This con- 
trol point was found to lie along a Mach cone emanating from an upstream corner point and 
the spike was eliminated when the paneling was readjusted. 

When the paneling in figure 53b was used, unstable results were obtained near the tip of 
the wing. Refining the paneling by an order of magnitude as in figure 49 made the results 
worse as seen in figures 50, 5 1 and 52. The refined paneling increased the likelyhood that 
disturbances from edge vortices could impinge on control points. The only really effective 
cure was to use contiguous panels with continuous doublet strength. 

To test the sensitivity of the nine parameter doublet spline, the supersonic flow over a 
60” flat plate delta wing at a Mach number offland angle of attack 5.73’ was computed 
using the arbitrary, somewhat pathological, paneling shown in figure 54a. The surface stream- 
line slopes at the panel control points are plotted in figure 54b, and compared with the exact 
linearized solution in reference [ 231, page 157. The agreement with theory is good, with most 
of the spread occurring in the panels near the vertex. 

The utilization of combined source and doublet panels on thick wings and fuselages 
eliminates interference of the interior wave reflection with the exterior pressure distribu- 
tion by applying boundary conditions which eliminate the interior perturbation flow. The 
paneling shown in figure 55 was used to compute the flow over the forebody of the Bl bom- 
ber. Use of the 6 coefficient doublet spline yielded smooth results and good agreement with 
experiment when the pressure coefficient was computed by means of the doublet gradient 
as seen in figure 56. The pressure coefficient computed by the aerodynamic influence coeffi- 
cients in figure 57, however, should agree with the results in figure 56, but shows considerable 
departure from the experiment (see ref. [ 281). This deviation is attributed to the influence 
of the line vortices emanating from those panel edges lacking continuity of the doublet 
strength and from noncontiguous edges for which the singularities in the aerodynamic influence 
coefficients from adjacent panels do not cancel each other because of the gap even when the 
doublet strength is continuous. Calculations of pressure coefficient from the aerodynamic 
influence coefficients using the improved contiguous paneling and continuous doublet spline 
agree very well with the experimental results as seen in figure 58. 

The two different panel methods were also applied to the Carlson wing using the paneling 
shown in figure 46. Since the leading and trailing edges are supersonic it is possible to analyze 
the pressures on the wing with sources only on the surface. Since there is no influence of the 
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trailing vortex on the wing because of the supersonic trailing edge, the wake also can be ignored. 
The results for source paneling in figures 59 and 60 indicate an unstable solution resulting 
from the interior Mach wave reflections. From figures 47 and 48 we see that the combined 
source and doublet paneling with the six parameter spline show considerable improvement 
with disturbances from panel edge vortices only occurring in the strip 10 near the tip. The 
use of the continuous 9 parameter spline eliminates all disturbance and yields results in ex- 
cellent agreement with experiment as shown in figures 61 and 62. 

An exact solution of the nonlinear inviscid equations for comparison purposes can be 
generated by using the exact solution for axisymmetric flow past a cone given in references 
[ 171 to [20]. Any plane which does not pass through the vertex of the cone will intersect 
the shock in an hyperbola (see figures 63 and 64). The shape of the surface was generated by 
computing the streamlines which pass through this hyperbola. The flow properties on this 
surface are the same as if the solid surface itself were immersed in the flow. 

Results obtained by the 9 parameter spline for the surface defined in figure 64 were 
initially very disappointing (see figure 65). The problem is in the approximation of the sharp 
leading edge which has a slope of about 1 degree. When the configuration was taken to be 
the curved surface and the x,y intersecting plane, control points near the leading edges of the 
two networks are displaced in different directions which proved to be more significant for the 
thin edges. 

Much better results were obtained when the configuration was taken to be symmetric 
about the xy intersecting plane (see figure 66). The errors at the top near the trailing edge 
(x = 1, y = 0) are undoubtedly due to inadequate paneling in that vicinity, since the panel 
normals exhibit anomalous variations there. These variations are discussed in a subsequent 
paragraph. Were our interest not confined to the upper surface, symmetry would not be 
available to fix the problem in figure 65. A more general approach is to set up a doublet net- 
work on the mean surface between the plane and the curved surface. This has been done with 
satisfactory results, as shown in figure 67. In this calculation the upper and lower surfaces 
were covered with both sources and doublets, with source strength specified to cancel the 
normal component of the free stream and the potential inside set equal to zero. The normal 
mass flux was set equal to zero on the interior mean surface. 

To study in greater detail the difficulty with thin edges, we considered the flow past a 
sharp-edged delta wing whose lower surface is at zero angle o‘f attack and whose upper sur- 
faces are at a small inclination to the freestream. For the case of a supersonic leading edge, 
the results obtained were poor near the leading edge and got worse downstream (see figure 
68). Analysis of the results revealed a small discontinuity in doublet strength at the leading 
edge junction of the upper and lower surface networks. This was eliminated by replacing the 
$Q = 0 boundary conditions at the control points along the leading edge of one of the net- 
works by W, . 2 = -n .n. The results improved spectacularly, as shown in figure 69. For 
the case of a subsonic leading edge, the quality of the solution, as evidenced by such data as 
the normal mass flux components on the external surfaces, also was much better when the 
boundary conditions were adjusted to insure continuity of the doublet strength from upper 
to lower surface. However, figure 70 shows that the pressure distribution was just as good 
whether or not the doublet strength was continuous. We attribute this difference in behavior to 
the difference in character between the supersonic and subsonic vortices generated at a doub- 
let strength discontinuity. (These computations were made with the program that did not 
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match doublet strength exactly across network edges. With the later program, these difficulties 
may not have arisen). 

The remedy which worked so well with the delta wings improved the results for the 
conical-flow-field surface, but not to our complete satisfaction. Figure 71 shows the pressure 
distribution at the centers of panels along the leading edge to be quite oscillatory. Much 
better results have been obtained with different paneling of the same surface, and, pending 
further study, we are inclined to ascribe the inaccuracies shown in figure 7 1 to the high aspect 
ratio of the leadingedge panels. 

Another problem encountered with the concial-flow-field surface was a fall off in pres- 
sure on the triangular panels near the top of the bump. We feel this is due to an anomalous 
variation of the directions of the normals to the panels. However, we now find it is not easy 
to avoid such anomalies in the vicinity of saddle-point-like behavior of the surface being paneled. 
In particular, it is not generally the case that the surface normals converge to the correct value 
at a saddle point as the grid is refined. Unfortunately, results for the pressure distribution are 
quite sensitive to any disparity in surface normal.direction. The alternative panelings shown in 
figure 72 differ considerably in the variation of the x-component of the surface normal over 
the triangular panels, but even the one on the right is sufficiently bad to cause a considerable 
drop off in pressure near the top of the bump (although much less than for the case on the 
left). 

Experience with the delta wing of figures 68 to 70 lead to an improved way of matching 
the doublet strength at network edges. On the downstream side of the common network 
boundary the boundary conditions of the vanishing of the lower peturbation velocity poten- 
tial is replaced by zero mass flux penetration of the upper surface. This dramatically improved 
the delta wing pressures. It also improved the solution to the stream surface of figure 63, 
but the results appear to be adversely affected by the high aspect ratio panels along the 
leading edge. 

12.6 APPLICATION OF THE CONTINUOUS DOUBLET SPLINE WITH 
POTENTIAL BOUNDARY CONDITIONS TO SUPERSONIC FLOW 

OVER WING-BODY CONFIGURATIONS 

The paheling used on the wing body combination described in reference [291 is shown 
in figure 73. The midwing position with zero angle of attack and yaw was chosen. The flow 
has, therefore, two planes of symmetry and paneling is required for only one quarter of 
the surface. The body consists of an ogive nose terminated by a circular cylinder. The wing has 
a symmetric NACA 65A004 profile. The pressure distribution on the fore-body is shown in 
figure 74. The agreement with the experimental measurements is good. Figure 75 shows plots 
of pressure coefficients at 36%, 53%, and 75% of semispan. The pressure distribution for the 
panel method is smooth and in fairly good agreement with the experimental measurements. 
Over most of the cross section profiles the computed pressures are somewhat higher than the 
experimental values. Near the leading edge the gradient of the pressure coefficient from the 
panel method is steeper than the measured distribution. This difference is due in part to in- 
adequate paneling near the leading edge. The actual airfoil has a blunt leading edge while the 
paneling is necessarily sharp since the leading edge panels must be inclined at angles less than 
the Mach angle. 
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The flow over an arrow wing-body combination using the paneling in figure 76, for which 
no gaps appear between network edges, was computed. The pressure distribution on the wing 
is shown at various spanwise cross sections in figures 77 and 78. The calculations are in good 
agreement with the pressure measurements. The introduction of far-field aerodynamic influence 
coefficients reduced the computing time by about’ 40% over the solutions with all near-field 
aerodynamic influence coefficients. Experimental pressures on the upper surface near the 
leading edge at the 65% and 80% span locations are consistently higher than the theory. This 
is attributed to a leading edge vortex which has not been taken into account in the calculations. 

An analysis was performed on a similar arrow wing-body configuration in figure 79 but 
featuring a twisted wing. The spanwise wing paneling was rearranged to obtain a match with 
the pressure orifice locations on the wind tunnel model. The wing body intersection paneling 
was also &fined to match the model closely. The paneling resulted in 983 control points out 
of a possible 1000. The usual panel boundary conditions of 4 =O on the interior surface and 
u = -g l fi were applied. The solution required about 600 cpu seconds on the CDC 7600. 

A comparison of wing surface pressure distribution with experiment is shown in figures 
80 and 8 1 for a Mach number of 1.70 and 4 degrees angle of attack. Good agreement with 
experiment is shown except at the inboard most station. The leading edge peak in the cal- 
culations is caused by a disturbance at the intersection of the wing at the leading edge and 
the body. The effects of this disturbance are also seen in the calculated body pressures shown 
in figure 82. It is thought that this was caused by poor paneling near the wing-body inter- 
section where one of the subpanels was found to be superinclined. Superinclined panels can- 
not represent solid surfaces. 

12.7 APPLICATION OF SUPERINCLINED PANELS TO CLOSE INLETS FOR 
THE COMPUTATION OF SUPERSONIC FLOW OVER NACELLES 

WITH THE COMBINED SOURCE AND DOUBLET PANEL METHOD 

To test the effectiveness of superinclined panels for closing an inlet, the supersonic flow 
over the nacelle shown in figure 83 was computed using the pilot code. A plane superinclined 
network was used to cover the inlet. The exit area need not be closed as in subsonic flow 
since it lies outside the region of influence for the nacelle. 

Boundary conditions of vanishing perturbation potential and perturbation mass flux 
were applied to the downstream side of the inlet and conventional potential type boundary 
conditions were used on the nacelle surface. To provide a disturbance for the superinclined 
network to cancel, four source panels in the plane 4 = 7r/2 were placed upstream a distance of 
the nacelle radius. To have a solution without su R erinclined panels for comparison, the source 
distribution on the nacelle was set equal to -u l n and standard mass flux boundary conditions 
were applied to the exterior surface. Figures 84 and 85 show the pressure coefficient along four 
aximuth positions on the nacelle. The two calculations are in good agreement. The flow 
without the superinclined panels appears to have interference from the interior flow due to 
the reflected waves from the lip that is effectively eliminated by the superinclined panels. 

Another test on how effectively the superinclined networks absorb upstream disturbances 
was conducted on the same nacelle. The plane superinclined network was placed inside the 
nacelle at axial station 2.25 (see figure 86). On the upstream portion of the nacelle, zero 
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normal mass flux boundary conditions were prescribed on the upper surface of a source net- 
work. This results in an internal flow to be absorbed by the superinclined network. 

Figure 86 shows the exterior surface pressure distribution on the nacelle as a function of 
axial position for two different paneling of the superinclined network. The 48 panel network 
is seen to be too coarse to absorb adequately the interior reflections. The pressure is oscil- 
latory with a wavelength about equal to the reflected Mach wave pattern.’ Doubling the panels 
by increasing the number of radial divisions smooths out the pressure distribution. Except for 
the region near the superinclined network, the pressure is in good agreement with Lighthill’s 
theory [ 251. 

With the successful development of the superinclined networks, the LES 2 16 super- 
cruiser configuration, which contains superinclined inlets, was successfully analyzed by the 
advanced panel pilot code. The paneling scheme is shown in figures 87 and 88. A total of 674 
panels divided into 3 1 networks were used to define the cdnfiguration. The model has two 
openings for flow into the engine. The diverter, which splits off the low energy of the boundary 
layer flow from the engine inlet is closed by a superinclined network with the mass flux pre- 
scribed as boundary conditions. The boundary of the inlet opening has edges which are sub- 
inclined to the flow on the upper part and superinclined to the flow on the lower part. The 
upper section of the inlet is covered by a subinclined network and the lower side is covered with 
a superinclined network and the mass flux is specified on both networks. The complete solution 
required 612 cpu seconds on the CDC 7600. Computed results are compared with experimental 
data and with results from a linearized boundary condition method similar to FLEXSTAB 
are shown in figure 89. There is very good agreement between the pilot code calculations 
and the experimental data of reference [ 3 1 I . Note that the results from the linearized code, 
in which the fuselage is represented by a simple body of revolution, are clearly inadequate to 
represent the effects of the canopy and inlet on the wing pressures. Here is an example in 
which the present panel method can more accurately model the aerodynamics of the configura- 
tion than the simpler models currently in use. 

Some waviness is apparent in the pressure distribution on the upper surface for q= 0.37. 
This was observed in other pressure distributions and was found to be eliminated by increased 
weighting of the upstream panel center values of the singularity strengths in the least square 
fit. This is explained in Appendix C where a detailed description of the singularity splines is 
presented. 
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13.0 CONCLUSIONS 

Theoretical analysis of the singularities caused by discontinuities in doublet strength 
and in panel geometry, combined with the experience of the flow computations described 
in section 12, indicate that it is important to have panel geometry that contains no gaps and 
a doublet spline system that maintains continuity of doublet strength over the surface. It 
was also found that use of a source panel system alone on closed configurations, such as three 
dimensional wings and bodies, produces interior wave reflections that influence the exterior 
pressure distribution. 

This ultimately lead to the development of the present panel method utilizing combined 
source and doublet panels with potential boundary conditions to eliminate the interior pertur- 
bations. The panel geometry with all contiguous edges was achieved by dividing the basic non- 
planar quadrilateral panel into eight triangular subpanels. Continuity of doublet strength was 
obtained by prescribing a quadratic doublet distribution over each triangular subpanel instead 
of just over the panel projection. The resulting panel method appears to be insensitive to 
choice of paneling provided the paneling is sufficiently fine to describe the solution adequately. 

Superinclined panels, that is, panels which are inclined at angles with the free stream 
greater than the Mach angle, were developed and applied to the closing of inlets on nacelles. 
They were found to be effective in absorbing the incident perturbation flow. With the addi- 
tion of superinclined panels, the present advanced panel method is now capable of solving for 
the flow over complicated wing-body combinations with engine inlets and nacelles. 

Boeing Commercial Airplane Company 
P.O. Box 3707 

Seattle, Washington 98 124 
1978 
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APPENDIX A: . 
DERIVATION OF BASIC FUNCTIONS AND THEIR DERIVATIVES 

Al. BASIC VARIABLES FOR SUBINCLINED PANELS (SECTIONS 5 TO 8) 

For convenience, we have introduced the following parameters: 

m= (~2-~1) /(x2-x1) X=1/m 

The quantity m is the slope of the panel edge defined by 

x,= (x-xl) - (Y-yl)/m=O 

We let 

s, =xm + s/m 

r =JZTZ 
SZ =sxm-z /m 2 

z, =xm 2 + z2/m2 

A2. BASIC INTEGRALS FOR SUBINCLINED PANELS 

For the basic integrals we have defined 

In(r, t) = J 
tndt/dm 

Qn= / 
sn/r2R 

R,= 
f 

snRds 

P, =z 
I- 

snRds/r2 

(Al) 

(A21 

@3) 

s, = / sn10 (r, s,-r) ds 644) 
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We shall use the subscript m to denote combinations of functions of the form 

ds = xmwn + wn+l /m (A3 

and similarly for the other functions Q, R, and S. 

A3. RECURSION RELATIONS FOR THE FUNCTIONS-SUBINCLINED PANELS 

The integral I,(r, t) occurs in the first integration of C#I in the form 

I- 
sm-r 

tndt//t<t+2r) = I, (r, sm-r) 
0 

WI 

To find a recursion formula, we consider 

-$ (tn Jt(t+2r)) = tn~22Jt+2r) 

Integration yields 

tnJZZG = r(2n+l)I,(r,t) + (n+l)In+l(r,t) 

or 

I,+1 (r,t) = [tnJZGi - r(2n+l )I,(r,t)] /(n+l) 

Substituting the limits 0 to s,-r yields 

In+ 1 (T,Sm-r) = [ (sm-r )n JP - (2n+l> r I, (r,s,-r>] /(n+l) (A71 

When the first three I, functions are expressed in terms of IO, we obtain 
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11 = R-r10 

12 = 3r210/2 + (s,-4r) R/2 

I3 = - 5r310/2 + (2sm2-9s,r + 22r2) R/6 

where R= sm2- r2. J 

Following a similar procedure for the w, we write 

$ ( snJs)= nsn-l (sm>2-: T sn(sm/m-s) 
r 

Integrating and rearranging terms yields 

m2 
Wn+l = (n+l) (1 - m2) 

[ snR - (2n+ 1 )x,w,/m - n (x,2 - 22) wn-1] 

Now 

Qn= 
I- 

s”ds 

r2JZm 

and this results in 

Qn = Wn-2 - z2Qn-2 

The function R, in equation (A4) is more easily expressed in terms of the other 
functions by moving the radical to the denominator. This yields 

Rn = Wmmn - W n+2 - Z2Wn 

648) 

(A91 

(AlO) 

(Al 1) 
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Expanding wmmO and using the recursion for w2, we obtain for RO 

RO = CXm 2 - z2)wO/2 + x,wl/2m 

The functions S, are easily expressed in terms of the other functions by integration 
by parts. Hence, using equation (Al 4), we get 

s, = J $10 (r, s,-r)ds = 
s 

snlog [(sm+R) /( sm-R)] ds 

= [tP+’ IO (r, s,:r) + Qmn+2 -Wn+l/m]/ (n+l) 

Using equation (Al 0), we may simplify this expression to 

s,= [s n+l IO + xmwn-Z2Qmn]/(n+l > 

The P, functions can be expressed in terms of the functions Qn and w, since 

6412) 

P, = z snRds/r2 = z 
s 

‘(~~2 - r2)ds/Rr2 

then 

Pn = z (Qmmn - wn) = z@mQmn + Qmn+l Im-wn) 

As only the functions PO and Pl occur, we write these down immediately using the recursion 
formula for the Qn in equation (Al 0) 

PO = Xm (ZQmo) + ZQm 1 /m - ZWO 

and 

(Al31 
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A4. ZERO ORDER FUNCTIONS 

Evaluating the integral for IO yields 

IO (r,S,-r) = 

Sm-r 

J& =+ log (Al41 

In this and all subsequent integrals, a form is chosen so that the functions vanish when the 

radical R = s, 7 - r vanishes and, hence, the real part is zero for R imaginary. Similarly 

J ds 
wo(s,sm ,r,m) = 

Js,2-r2 

m 
= 2Jc7 log 

(sm - ms) + R,/a 1 (sm - ms) - RJ= 
(Al% 

forlml< 1 and 

wo =J& tan-l Ryz 

( ) 

wo =dh tan-* R>$ 
( ) 

for Irn I> 1. Care must be taken in evaluating all inverse tangents in the aerodynamic influence 
coefficients to select the correct quadrant. The correct signs of the numerator and denominator 
of the argument are essential. In the FORTRAN code the function ATAN2(A, B) is used 
instead of ATAN(A, B). 

It is considerably more complicated to derive Qo and Q 1. For this we write 

1 - =y, i=J--i- 
s + iz 

and obtain 

J ds 
IQ=Q~ -izQo= 

(s + iz) Jm 
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Introducing a new variable r = s + iz, the integral IQ becomes 

where a= (xm-iz/m)2, b=2 (x,-iz/m)/m+2iz, andc=‘(l -m2) /m2. 

Substituting a, b, and c and simplifying yield 

‘Q = - 2 (xm ! iz/m) log 

where ym = s - s,/m. Multiplying by Xm - iz/m and using the recursion formula for Qn 
leads to 

Qm I- we/m - izQm0 
=-- ; log z ( ) 

It is convenient to eliminate all parts of Qm 1 which depend only upon endpoints, 
i.e., only upon s and s,, since at endpoints s and S, reduce to y - yi, and x - xi, i = 1,2. 
We shall show that the function 

zCP ; log - 
I I Zcm 

vanishes in the integration around a contour. Now 

J 
smsds 

I- 

ds Qml -we/m= r2Jsm - rnJp 

Since sm - s/m = 0 represents the panel edge, then ds/m = ds, along the panel edge; we have 

6417) 

Qml -w,/m=/[E) ds-91 
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In order for the integral to depend only upon its end points we must have 

That this is so is easily shown by carrying out the differentiation. Thus, when Qm 1 is not 
multiplied by m or x, the function Qml may be replaced by 

Qml = w/m 6418) 

A similar approach may also be used to simplify zQmo. Consider 

forlml >1 

mxmR 
lZl(mS-Sm) for Irn’ < ’ 1 (A191 

Then 

Substituting x, = s, - s/m and writing ds/m = ds, yield 

ZQmO-QI=Z 
,I[ ,“;“R- em;?- ~2) R 1 ds 

‘km’: s’)R] dsm/ 
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It is easily shown that the line integral on the right hand side vanishes when integrated 
around a closed contour since 

a 

[ asm $ - ,zsm,2)R ] =+ [bm2:s2)R] 

Hence, we may replace zQmO by the simpler relation QI when zQ,O is not multiplied by 
m or x,, i.e. 

ZQmO = QI (A201 

In evaluating the functions PO and Pl defined in equations (Al 3), we are not free to 
use the simpler versions of zQmO and Qm 1 since these quantities are multiplied by x, and 
l/m and, hence, do not cancel in integration around a panel corner. The complete function 
zQmO is found by taking the imaginary part of equation (Al 7). For subsonic panel edges, 
m < 1, we write zQmO in the form 

For supersonic panel edges it is convenient to combine the inverse tangents. Thus 

ZQmO - 2 -r tan-l 2zR (xms-z2/m) 
2~2R2 - (xm2 + z2/m - Z2) (S2 + Z2) 1 

For points outside the Mach cone, R is set to 0 but inside the Mach wedge of figure 90 
defined by the envelope of Mach cones from points on the supersonic edge for which 

xm2 + z2/m2 - z2 >O 

the function zQmO takes on the values f a/2. 

The function Q,l is found by taking the real part of equation (A17). The result can 
be simplified since a common factor 

xm2 + z2/m2 - z2 

can be taken out of the numerator and denominator of the logarithm argument., The result 
is 

Qmi = wolm - IO (Sm , R) 

where IO is defined in equation (Al4). 
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A5. EXPANSIONS OF w. AND w1 FOR MACH LINE PANEL EDGES 

When Im I= 1, the panel edge is aligned with a Mach line. The coefficient of the log term 
and arc tangent term in wo then becomes infinite and an expansion is needed for both wo and 
wl . From equation (Al 5) we write 

WO = (m/@m) 1% [ (l+flmZR) / (I-&+R)] 

where Pm = Jzz and ZR = R/(sm - ms) . Since Pm is small, the logarithm term is 
expanded in the form 

Wo = mZR2 [l+ZR2(l-m2)/3+ZR4(l-m2)2/5+ZR6(i-m2)3/7i--.] 

This expansion is valid for Im I greater or less than 1. For m = +l , it reduces to 

wo=R,(s, f s) 

To obtain a similar expansion for wl we consider equation (A9) and obtain 

WI =m2 [R - xmwo/m] / (1-m2) 

Substituting the expansion for wo yields 

m2 w1=- 
l-m2 i R-x,zR[l +zR2(l -m2)/3+zR4(1 -m2)2/5+zR6(1 -m2)3/7+ . . .] 

Now 

R-x,zR=R l- [ ss] = +-::I:] 

= (1 - m2)Rs (1-m2)zRs 
m(sm-ms) = m 

then wl becomes 

Wl = mZR(S - l-l-lXmZR2 [ 113 + ZR2 (1 - m2),5 

+ ZR4 (1 - m2)2/7 + ZR6 (1 - m2)3/9 + . . .]) 
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Similar expansions may be derived for wn for n > 1, but these functions are not required 
in the aerodynamic influence coefficients in the form now being used. 

A6. EFFICIENT COMPUTATION OF wo, w 1 AND QI 

In the calculation of the influence coefficients, the functions w0, wl , and QI are evaluated 
for each edge at the two endpoints. This involves the utilization of the computer subroutine 
for inverse tangent and logarithm twice for each edge. Considerable speed of computation can 
be achieved by combining the arctangents and logarithms for each edge. For the supersonic 
edge we have 

-O=J; 2 
tan-l 

-Ym 

( ) R&Z 

where ym = As, - s. Using the formula for the tangent of the difference of two angles yields 

-O=J& 
2 tan-l ( Jx(yml R2 -ym2 Rl) 

YmlYm2 +C1 -X2)R1 R2 ) 

where the subscripts denote the quantities at the designated endpoints of the edge. Similarly, 
for Ql we have 

2 

QI=tan-1 g .( )’ m 
1 

= tan-l 
ZXm(Yml R2-Ym2 R1) 

xm2 RI R2 +Z2 Ym2 Yml 
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For subsonic edges 

w” = 2 (1: m2) 
sm- 

log 
[ sm 

ms+ z$Z] i 

-ms- m2 1 

- 
= (1 -Zm2) 

log (sm - ms + R JEJT) -log (m2Zm) 

1 

Since z, (equation (A3)) has the same value at all points of the line, we obtain 

where Cm = sm - ms. For QL we have 

Ql = sign (z) tan-l 

= tan-l Z~m(FmlR2-Gm2Rl) 
z2Gm lCm2 + Cm2R1 R2 1 

For edges aligned with the Mach lines, wo becomes singular and we must expand the 

function in powers of dT2 Letting 

zr = Ym1R2-ym2R1 
YmlYm2 +(l -h2)R1R2 

and expanding the inverse tangent in wo yields 

wo=zr l- 
[ 

(1 -x2)zr2 
3 

+ 0 - h:)2zr4 _ 0 - At) 3zr6 + . . . 1 . 
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A similar expansion for wl yields 

w1 =A [XxmwO-R2+ R1] 

=&2 [Xxmzr-R2+R1] c 2 3 (I - -zr - h2)Zr4 5 (1 - + h2) 7 2Zr6 -. . . 1 
Substituting for zr and simplifying yields 

w1 = [ (Yml s2 - R12>R2 -km1 s1 -R22)R(J/[Ym2Ym1 +(1-h2)R1 R2I 

(1 -x2),$ + (1 -h2)2zr6 

5 7 --.. 1 
The functions wo and w 1 are seen to exist for the value I h I = I m I = 1. 

A7. GRADIENTS OF THE BASIC FUNCTIONS FOR SUBINCLINED PANELS 

The functions used in the influence coefficients are functions of s, sm, and z when x, = 
s, - s/m is substituted. When the limits y - yl and y - y2 are substituted for s into the 
functions for evaluation at the end points of the panel edge, the quantities s, and s take on 
the values x - xl, y - yl and x - x2, y - y2, respectively. Thus, to find the derivatives with 
respect to x,, y and z, we need only compute the derivatives with respect to s, sm, and z. 
Using the operator 

we obtain 

VW0 = [- ms,, m (Xmsm - Z2), -z(sm-ms] 

m (zm - z2)R 

Using the recursion relation (A9) to find wl leads to 

m2 Rl 
VW1 = - [ 

vx, VW0 
l-m2 R --wom-X - mm 1 

(A211 

(A=) 

where R1 = (s,,-s,-z) and Vxm = (I,-l/m,O) . 
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Using the first of equations (A19), we find that 

vQ1 =(sm2 - siy(zm - “2) ( - 
{S f-m/m) k(- Z/Xm, Z/mXm, 1) 

’ Z (Sm, 4, -Z 

R 
)] - (l/m, -1,O)zR) (A231 

ThisformulaholdsforbothO< Iml<l and lml>l. 

The gradients of R, and S, can be found in terms of the other functions by differentiating 
under the integral sign, and in the case of y, differentiating upper and lower limits as well. 
This yields 

vR, = (Wmn, R - wmn/m, - Zwn) 

V Sn = (Wn, snIo (r,sm - r) - wnlm, - ZQmn) 6424) 

When m = 0, the panel edge is parallel to the panel x axis. If m = 03, the panel edge is 
parallel to the local y axis. In order to represent all panel edge angles, for 1 m 1 < 1, for which 
the panel edge is subsonic, we introduce new variables 

A A 
xm = mxm = msm - s SZ = ms, = scrn - z 2 

h 2 h zm = m zm = x, 2 + z2 6425) 

and define new w, function by 
h 
wn = w,/m 6426) 

For the supersonic panel edge I m I > 1 and we replace 1 /m by X but retain the original form 
of the variables instead of the relations in equations (A25) and (A26). In this form the 
functions hold for all values of m, 0 < I m I < 1 and for all values of h, 0 < I A I < 1. 

A8. ANALYSIS OF SINGULARITIES OF THE FUNCTIONS FOR SUBINCLINED PANEL 
AND THEIR DERIVATIVES 

A8.1 SINGULARITIES ON THE MACH CONE 

To find the effect on the flow pattern of discontinuities in doublet distribution and 
source distribution, it is essential to understand the singularities of the basic functions wi 
and QI and their derivatives. From equation (Al 5) we see that for subsonic panel edges 

wo - R 
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near R = 0, the Mach cone through an endpoint of a panel edge. The gradient WO then becomes 
infinite like l/R as the field point approaches the Mach cone (see fig. 91). This is true for both 
subsonic and supersonic edges. When 1 m I > 1, the panel edge lies outside the Mach cone through 
the corner point, w0 does not vanish on the Mach cone, however, but letting R + 0 in equa- 
tions (Al 6) yields 

wo = *7r/2 455 (~27) 

Since x, is always positive downstream of the panel edge, the sign is according to the sign of 
S-AS,. Using the recursion relation in equation (A9), we see that for subsonic panel edges 

WI - R 

near the Mach cone. For the supersonic panel edge 

W 1 = AXmW()/(h 2 - 1) = ?shxm/2J$X5j3 (A23 

on the Mach cone. The quantities w0 and wl are defined inside the region between the 
Mach cones from the two ends of the panel edge and Mach wedge formed by the planes 
containing the edge and tangent to the two end Mach cones (see fig. 92). This wedge region 
is defined by the relation 

-z2 > 0 zm - 

In this region the value of w0 and wl take the limiting value on the Mach cone given by 
equations (A27) and (A28). 

On z = 0, w0 when evaluated for each end point is a function which is conical about the 
end point as illustrated in figure 9 1. The combination of w0 evaluated at the endpoints 

wo12 = (wo)1 - (woJ2 

leads to the total contribution from the panel edge described in figure 92. 

The other function which is also defined in the Mach wedge is QI. The variable x, is 
zero on the vertex of the Mach wedge and is positive within it. Thus, it is seen that for 
Iml> 1, 

QI = -+a/2 W’% 

as R + 0 with the sign determined by z (s - hsm) while for subsonic panel edges, QI goes 
to zero like R + 0. Since QI - R, then gradient ot QI becomes infinite like l/R near the 
Mach cone. 
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The value of QI for z N 0 in the Mach wedge is easily shown for I m I > 1. We must con- 
siderthe contribution from the endpoints of the panel edge: 

QII - Q12 

Downstream of the panel edge x, > 0. The quantity s - s,/m is proportional to the oblique 
coordinate to x,, say ym. 

For points x, y lying between 

yml = sl -Sm]/m = 0 

and 

Ym2 = Q-Sm2/lll =O 

the quantity ym2 >0 and y,l <O. For this case QI, = - (7r/2) sign (z) and Q12 = (n/2) sign (z) 
and we have 

QII - Q12 = - sign (~1 (A30) 

For points outside for which y,l and ym2 have the same sign and R = 0, 

QI, - Q12 =0 

For subsonic leading edges and z + 0, the function QI = +n/2 if R f 0. The sign is 
determined by the sign of z and of mxm. Consider a point downstream of the intersection 
of two subsonic panel edges as illustrated in figure 93. The quantity mx, is positive for the 
right hand edge in figure 93 and negative for the left hand edge. Since the influence 
coefficient from a panel is found by going around the panel in the counterclockwise direction 
the value of QI from equation (A19) for the two sides evaluated at the common endpoint 
for Iml< 1 is 

- 7~ sign (z). 

For points between the Mach lines and the nearby panel edge the contribution from the 
function QI is zero. In the region between the Mach cones inside the Mach wedge for a super- 
sonic panel edge equation (A30) holds. 
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AS.2 SINGULARITIES ON PANEL EDGES 

For z = 0, we have, for subsonic panel edges 

m wo = 
log 

[ 

(Sm-Ills) + J(1 -m2)(sm2-s2) 

2&Z (Srn -ms) - 1 J(1 - m2) (Sm2 - S2) 

Upon multiplying both the numerator and denominator by the denominator, the relation 
takes the form 

wo = & 1% 
[ 

m (Sm - s/m) 

(sm - ms) - J(l - m2) (Sm2 - S2) 1 (A311 

Since s, - s/m = xm = 0 is the panel edge, we see that w0 has a logarithmic singularity at the 
panel edge. From equation (A21) setting z = 0 yields 

(-ST Sm,O) 
vwo = xmJm (A321 

The gradient of w0 has a higher order singularity 1 /xm at the subsonic panel edge. Since this 
formula holds for supersonic edges as well, the gradient has a 1 /J-singularity on the 
two Mach lines through the corner point and is zero between the Mach lines and the panel 
edge. The gradient QI on the panel is given by setting z = 0 in equation (A23), or 

VQI =& (s - smlm) 
(Sm2 - S2 ) 

(s - St-&) 
aQ1/aZ = xm&&T 

NW, 1) 

~QI -= ~QI o -= 
3 ax ay ’ (A331 

For I m I < 1, this has a 1 /xm singularity near the panel edge xm = 0. For the supersonic panel 
edge kn I > 1, and aQf/az is zero ahead of the Mach line. Also aQT/az has a l/i/G 
singularity at Mach lines. When the panel edge is a Mach line, then the singularity is l/G 
at the panel edge. 
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A9. DERIVATION OF THE BASIC FUNCTIONS FOR SUPERINCLINED PANELS 
(SECTION 9) 

We define the following functions: 

where 

Let 
r2 = ye2 + 6-Ze) 2and R,= Jm . 

t = 1-2 = ye2 + ({-z,>~ or J- z, = JG . Then dS = dt/2Jty2 

and 
& y 

/ 

dt 

tJ0-p) 

Integration yields, after some manipulation, 

GI =$-tan-l 
. [ 

~2 ({-ze) 2 - ye2Rs2 

2XYe (.tmze) Rs 1 
Using the formula, tan-l ( 1 

GI =--+ tan. 

/X> = 7r/2 - tan-l (X), yields 

This can be further simplified by applying the formulae 

tan 28 = 2 tan0 
1 - tan20 

and 

Thus 

tan-l (l/x) = n/2 - tan-l (X) 

CjI = tan-l 
[ 

x (Ze - S) 

-YeRs 1 
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The function Go is seen to be 

Go=/% =JJx2my:;w(c 
-ze 

>2 = tan-1 (9) 

The higher’ order functions wn = 
/ 

PdT - can be evaluated by a recursion relation. 
Consider Rs ’ 

2 - P (tT+e) 
-+ (fIlR,) = nP-l Rs Rs 

Integrating yields 

zn+l = --& [ (2Il+l)ZeGn + n (X2 - Ye2 -Ze2)Gn-l - fnRSl 

from which 

whl = zeiTo - R, 

G2 d- 2 [3zeGl + (x2-Ye2-ze2) 50 - CR,] 
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APPENDIX B: 
DERIVATION OF THE INFLUENCE COEFFICIENTS FOR SUBINCLINED 

PANELS OF SMALL RELATIVE CURVATURE 

Bl. THE CURVED DOUBLET PANEL 

B 1.1 EVALUATION OF THE FIRST INTEGRAL IN EQUATION (5.10) TO THE FIRST 
ORDER IN { 

The first integral of equation (5.10) is expanded in the e’s and only first order term are 
retained. Using the expansions 

12(x-r + El - t,yd) = 1-1(x-r-t,yg) + ‘1 px (x-v-t,yg) 

1 1 
= 

C - 
1+ 

263 E2t 

JQijqj &Gj 2 (t + 2r) + ’ ’ 1 ’ 

/ 

x+e, 

/ 

X 

F (x0) dx0 = F(xo)dxo + ‘1 F(x) 
0 0 

and substituting the new variables 

x,=x-xl -(y-yl)/m, s=Y-Yo 

s,=x-x1 +(yo-yl)/m=xm+s/m 

r2 = s2 + Z 2 

we obtain 

- & E(L”’ 
-’ p(x-r-t,y-s) + (z/r) { (x-r,y-s) px (y-r-t,y-s) dtds 

Jm 

031) 

‘-’ * 
tz 

p (x-s, ,y-s) 5 (x-r, y-s) ds 

Y-Y2 r2Jp 
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To simplify the last integral of equation (B2), we replace the first term in square brackets 
with 

Sxxt/ (t+2r) = 11 - W(t+2r)l lxx 

and expand the remaining terms to obtain 

G +F/r = fx (x-r, y-s) + {(x-r, y-s)/r = To/r - rCxx/2 

where co = {(x,y-s). 

Since 

= 
/ 

d (t+2r) = 
(t+2r) J(t+2r) [ (t+2r) - 2rl 

integrating the term 

2 (fx + f/r) &iz$ 
of equation (B2) by parts and combining all similar terms in the resulting equation yields 

I a 
(w,,/2) I-” J- 

sm-r 
p(x-r-t,y-s)dtds 

+z ‘-‘I P(x-Sm3Y-s)[sm (t0/r2+txx/2) -{ox 1 * 

Y-Y2 

+z i’“j~;-&;;-” ~x;yy-s’ + t( !j + $)] dt& ) (B3) 

y-y2 0 
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To perform the integrations with respect to t, we define the functions 

J 

t t”dt 
In (r, t) = 

d JzizT) 

Expanding 

where ii = I.c(x-r, y-s) 

and 

where 50 = {(x, Y-s) 

/.4x-r-t, y-s) = ii - iixt + pxx t2/2 

S= W-r, Y-s) = 50 - rSox + r2.t xx/2 

equation (B3) then becomes 

-& 2 I0-&,/2) Ly-” [ll~o-I~jI,+I2jT,,P]ds 

s 

Y-Y 1 
+2 I-L (X-Sm, Y-s) [Sm(So/r2 + r&2) - COx]ds 

Y-Y2 &p- 

Y-Y1 

s [ 

iix {(x-r, y-s) 
Z r IO 

Y-Y2 

- 11 (~xxSCx-r, Y-d/r - I-lx (to/r2 + txx/2)) 

- I:! ~xx(to/r2 + lxx/2~ ds 1 W) 

(B4) 

(B5) 
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where I, = I, (r, s,-r) . 

The integrals in equation (B6) are further simplified by expanding 

ji= p(x-r, y-s) and c(x-r, y-s) 

in r and using the recursion relations in equation (A8), we obtain 

-2n dz ’ 2 1 (I-z{,,/2) yLysyl [(PO + r21xx/4) 10 - (pox -F) /p]ds 

1 Y-Y 1 
+z P (X-sm, Y-s) pm (Sol r2 + Sxx/2) - Co,] dsl dx 

Y-Y2 

1 
Y-Y 1 

-z [Cox~ox + (50 + r2 Cxx/2) PENIS] 4-$s 
Y-Y2 

Y-Y 1 
+z 1 [ roxcLxx + (lo/r2 + lxx19 (pox - F pXx)] &pds 

Y-Y2 

Since &x/r2 = Sm 2/r2&-- l/J- 

expanding P (x-sm, y-s) in powers of sm and collecting coefficients of 

/-4x, Y-S), I-lx (x, Y-S), I-lxx 

yields 

(B7) 

m=-& $ 

Y-Y 1 1 { /.4x, Y-s>ti 1 (~1 + px (x, Y-sN2 (~1 + ~~~$3 (s) ds (B8) 
Y-Y2 
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where 

$,= (1 -G,,P) Io+z 
SmSO 

r2&m 

*2 = - ZSOXIO + (ZCxx- 1) &m - Z [CO - SmrOx + Sm25xX121 

4. 

+F (50 - SmrOx + Sm2S.xx/2)/J~ (B9) 

Before performing the integration and differentiation, we now examine the other 
integrals and cast them in a similar form. 

B 1.2 EVALUATION OF THE SECOND INTEGRAL OF EQUATION (5.10) 

Performing the differentiation with respect to x of the second integral in equation (5.10) 
and introducing the variables in equation (B l), yields 

s 

Y-Y 1 
fx ( X-Sm, Y-S) I-1 (X-Sm, Y-S ds 

Y-Y2 

- zf; yI;yBy ’ a sm-r [ Sxxk4x-r-t, y-s) 

+ cx(x-r-t, y-s)l-c,(x-r-t, y-s)]dtdsl&% (B10) 
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-.- ---... .- ..- 

To perform the integration with respect to t, we expand the quantity in square brackets 
in powers of t. Integration of the second integral in equation (BlO) with respect to t yields 

1 
1 

Y-Y 1 

- 2% mxx z + Soxllx)Io 
Y-Y2 

- (X,x1-r, + roxPxx)Il + 3fxx~xxI2-j ds 

Applying the recursion relations in equation (A8) leads to 

1 
Y-Y 1 

=-2a 1 { r(s XX ii+ Soxclx) + r (Xxx Ex + SOx~xx) 

Y-Y2 

+ 9r21xxPxx14] 10 - (Xxxix + toxPxx) &n 

+ 3 (sy4r) (xxpxx Jm}ds (Bll) 

Equation (BlO) is placed in the form of equation (B8) by expanding Fin powers of r and 
P (X-sm3 Y-s) in powers of sm. This yields finally for equation (B lo), with equation (B 1 l), 

() (x) = - & J Y-Y 1 
[ 52, (s) P (x,Y-s) + a2 (s) I-(X (KY-s) + a3 (~1 ~xx] ds (B12) 

Y-Y2 
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where 

nl _ sx c+SrnY Y-S) 
&TyT +sxxlo 

~2 = s,t,(x-sm, Y-s) 
- &m 

- xxx JP+ fox10 

~ 
3 
= Sm2Sx (X+$-n, Y-S 

2Jm! - ({ox - ~SXXS,/~) &iii= + 3r2Sxxb/4 (B13) 

Bl.3 EVALUATION OF THE THIRD INTEGRAL IN EQUATION (5.10) 

Performing the differentiation with respect to y in the third integral of equation (5.10) 
and introducing the variables of equation (B 1), yield 

r$(Y) = -$ 
J 

‘-’ ’ sly (x-sm, y-s) p (x-sm, y-s) ds 

Y-Y2 r&T 

Since 

-$ /y-y’ +[sm-r 
Y-Y2 

-& /y-y’ g- sm-r 
Y-Y2 

cxyp(x-r-t, y-s) + fy(x-r-t, y-s)px(x-r-t, y-s) ds 

JW 1 
Sy(x-r-t, y)p(x-r-t, y0) dtds 

&z7 

s 
dt = t 

JtS r&C) 
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integration of the last integral by parts leads to 

(p(Y) = -6 
I- 

‘-’ ’ SSm [cy (X-Sm, Y-S) /.L (X-Sm, Y-S)] ds 

Y-Y2 

- & {y-y’ s [ sm-r (r+t)[<xyl.l(x-r-t, y-s) 
Y-Y2 

+ Sy(x-r-t, y-s)px(x-r-t, y-s)]dtds/r2Jt(t+2r) (B14) 

To integrate the last term with respect to t, we expand p(x-r-t, y-s) and c(x-r-t, y-s) 
in powers of t and apply the recursion relations in equation (A8). After considerable simpli- 
fication, equation (B 14) then becomes 

f$(Y) = -& 
Y-Y’ 

/ 
SSm{y (X-Sm, Y-S) I-1 (X-Sm, Y-S) ds/r 2Jgz 

Y-Y2 

-+ sy-yl {-(2C xypx + {yllxx) Ios/2 + cxyllxx %&zz 
Y-Y2 

+ [<xyP + 3‘~ (X-Sm, Y-S) (Px - SmPxx/2)] sdslr2) ds 

Finally, 4(Y) takes the form 

cgY)=-& 
/ 

Y-Y 1 

[@l(s) /4x, Y-S) +*2(s) I-(~ (x, Y-S) +@3(s) pxx] ds 
Y-Y2 

(B’5) 
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where 

a1 = S (Sm{y/r2 - SXY) l&p 

a2 = - fxysIo - Sty (X-Sms Y+> / m 

@3 = - SysIo/2 + sxy s Jm + SSm!Yy (X-Sm, Y-S) /2 JT S, 0316) 

Cl :4 INTEGRATION OF THE COMPLETE POTENTIAL 

From the form of equations (B8), (Bl2), and (Bl5), we see that the velocity potential 
from the doublet distributions is 

[a 1 (S)LdX, Y-S) + 02(S)Px(x, y-s)+ 03(s)pxx] ds @17) 

where wi = 2 tii(St Z> + ai +Qi(S) i= 1,2,3 U318) 

Since ~1 is a quadratic distribution of the form 

then $ may be expressed as 

n=O 

To separate 4 into its components, we define 

1 
/ 

Y-Y’ 

ffi=-2n w 1 (s) sids 
Y-Y2 

U319) 

(B20) 
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1 
J 

Y-Y 1 
Ti=-z q(s) sids 

Y-Y2 

1 
/ 

Y-Y 1 

x =-g q(s)ds 
Y-Y2 

Then the potentials $,, become 

@o=q-J 

$1 =xq)+Yo 

92=yq)-q 

$3=xyq-q +YYo-Y’ 

$4 = X2,0 + (2X-X& 70 - Y* /m + X 

~5=y2CY()-2ycq+a!2 

The basic integrals needed in evaluating ai, yi and x 

Ri =$ side ds 

Si = 
f 

si IO (r, sm - r)ds 

Qi =/ sids/r2dm 

Wi =/ sids/Jsp 

Wl) 

0322) 

W3) 

(B24) 

@25) 

(B26) 

(B27) 
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The functions Ri, Si, Qi, and Wi are derived in Appendix A. It is also convenient to use the 
subscript m to define functions like 

Wmi =lTs = / 
si (xm + s/m) 
~~~ = Xmwi + wi+l/m 

Similar notation is applied to the functions S, Q, and R when required. 

Using equations (B9), (Bl3), and (Bl6), we obtain for equations (B20), (B21), (B22) 

1 O!i = 2;; - $ [(l - z{xx/2) Si f z (A l Qmi + 1xxwmiI2-BOwi)] 

_ sxx (si - Wrni) - B l wi - {yQmi+l + SyyQmi+2 -I- *Xywi+l 
1 

Yi= -${$ C- ZB l Si + (Z{xx-I) Ri - z (A l wi - B l wmi 

+ rxxwmmi/2)] + B l Si - B l Wmi + Sxx wmmi - 2txxRi 

- Sxy Si+l - Sywi+l + rxywmi+l + tyy wi+2 
> 

(z2SO + S2)/2 - zA . SO - zB l SmO 

+2zBRO-*(l -%)RmO] + Be SmO - 2B l RO - CxxRmO/2 

+$ ~XX (Z2Sm0 + Sm2 ) - lxysm 1 - rysl + Syys2 + 2rXyRl 
> 

(B28) 

(J-329) 

(B30) 

(B31) 

127 



where the terms of the form A . wi and B . Wi are defined by 

A l wi = twi - tywi+l + Cyywi+2/2 032) 

B l wi = Sxwi - !txyWi+l (I3331 

Since the integrands of Si and Ri are continuous, differentiating under the integral sign is per- 
missible and we obtain 

aSi 
aZ=- 

aRi _ 
ZQrniy aZ ---ZWi 

With these relations, performing the differentiation.with respect to z of the terms indicated 
and simplifying leads to 

1 
ai=% ZQml 1 . - 3‘xx (Si+Z2Qmi)/2 

- & (A l Qmiz) - Z 2 (SxxWmi/2 - Biwi) 

+C xx wmil2 - tyQmi+l 

+ Syy Qmi+2 + lxy wi+l 
1 (B35) 

(B34) 

1 
Yi=s - 

{ 
ZWi + Sxx (z2wi + Ri) + B l (wmi - Z2QmiJ 

+ (1 +z $) [A. wi-B* Wmi+txxwmmi121 +cxxwmmi 

+ rxySi+* + CyWi+ 1 - Ixywmi+ 1 - Syywi+2 
> (B36)’ 

1 x=-z;; zso + (5x,/2$ z2wmo - 3z2So/2 + 3S2/2 - Rm0/2]+ Z2B l (Qmmo - 2wO) 

- cxy~,l - {,sl+ tyyS2 + XxyR1+ A l (z2Qmo - %I ) (B37) 
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When curvature is neglected, c = A l = B l = 0 and 

Qi = Z Qmi/2n 

yi = - ZWi/2K 

x = -zSg/2n (B38) 

the potential then reduces to equation (5.17). 

By examining the terms in the velocity potential involving {, we fmd that the potential 
has the same singularities as the velocity components for the flat panel. From equation (B35) 
for CYO, we find the term 

$ (A. ZQmO) =$#QI - ZQmlSy + Qm2Syyl2) (B39) 

leading to the derivative 

aQI /az 

From equation (A23) we see that the gradient of QI has a l/R singularity on the Mach cone 
R = 0. The velocity components then will have l/R3 singularities on the Mach cone. This 
singularity is too strong since it is not integrable and renders the terms involving 5 unpractical. 
Expanding the potential to the first order in 5 acts like a differentiation of the flat plate 
potential. To eliminate this singularity, the doublet distribution would have to be prescribed 
on the curved surface itself. It was decided that flat panels only would be used. 

B2. THECURVEDSOURCEPANEL 

We shall evaluate the influence coefficients for the source panel in a manner similar to 
that followed for the first integral of the doublet panel in the preceding section of B 1.1. 
Equation (8.2) differs from the first integral of equation (5.10) only in the differentiation 
with respect to z. Consequently, expanding this integral, retaining only first order terms in 
{ can be written down from equation (B3). This is 

4 = -& {(j - zrxx/2) f y-y1 / sm-r 
Y-Y2 0 

u-;-;;;tds 

+2 J 
‘-‘I 0 (x-sm,Y-s) [Sm(So/r2+3.xx/2). - fox] ds 

Y-Y 2 
Jp 
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. 
Y-Y 1 Sm-r 

+z Js ux [c (x-r,y-s) /r + t (Co/r2+Sxx/2)]dtds 

Y-Y2 0 
JGZ) 

where to = <(x,y-s) and s, and r are defined in equations (A3). Now 

u(x-r-t,y-s) = u(x-r,y-s) - o,t 0341) 

since u is linear in x and y. Performing the integration with respect to t yields 

Y-Y 1 
1 

4=-z f 1 (1 - Sxx/2) [4x-r,y-s) Ia (r,sm-r) 
Y-Y2 

- OX I* (r,S,-r) ] + Z 
u (x+rn9Y-s) [sm (Co/r2 + Cxx/2) - So,] 

Jm 

+zux 10 (r,S,-r) + ($ + %) 11 (r,s,-r)lids 

Eliminating 11 by means of equation (A8) and expanding 

u(x-r,y-s) = u(x,y-s) - rux = 00 - rux 

lead to 

(p-k Y-Y 1 
f { (I-ZLxP) [DO IO-uxR] 

Y-Y2 

+ ZU(x-Sm,Y-S) [Sm(TOlr2+Sxx12)-COx]IR 

(B40) 

(B42) 

(B43) 

where 
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To express the integrals in terms of the basic functions of appendix A, we’substitute 

R sm 2 1 -=- 
r2 r2R - x 

We then expand u(x,y:s) and u (x-sm,y-s) in s and sm. After combining and simplifying we 
obtain 

1 
J 

Y-Y 1 
@=-27 [u(x,y)$* (s) + a,*2 (s) + 93 (4 ds 

Y-Y 1 

where 

$1 = (1-zlxx/2) IO + zsm{o/r2R + z (Sms‘xxI2 - COd /R 

zfxx 14~ = -R+2R sm’+F 
s-ox-; 50 

$3 = - s (1-~~,,/2~I0 - z SmrO s/r2R - zs (SmSxxI2 - {0x)/R 

where 50 = <(x,y-s) 

Since the source distribution is linear in x and y 

u=ag+alx+a2y 

then the velocity potential may be expressed in the form 

~=afy$o+al~l +a242 

Then 

(B44) 

U345) 

WW 

1 
/ 

Y-Y 1 

40=-z $1 (s) c’s 
Y-Y2 
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1 
Y-Y 1 

=-2n J { 
(l-~<x&) 10 + zsmSo/r2R + Z(SxxSml2 - Sax) IR 

1 
ds 

Y-Y2 

and integrating yields 

$0 = $-PO + -01 

where 

X0 = A l QmO + SxxWmoI2 - B l wo - {xxS~/2 

and A. and B . are defined in equations (B33) and (B34). Now 

1 J Y-Y 1 
$1 =x@()-2n $2 (s) ds 

Y-Y2 

Finally integration yields 

$1 =x@+R0/27~+z~l/2n 

where 

X1 =A= wg-B. wm~-(xxwmm0/2 

Similarly, 

(B47) 

W8) 

(B49) 

(B50) 

$2 = Yh-J - $ J Y-Y 1 

$3 (s) ds 
Y-Y2 
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and 

where 

fp2 = y40 + s ‘/27r + zx2/29 (B51) 

X2=Cxx(wml -f31)/2+A* Qml -B* W] 0352) 

To compute the perturbation velocity vector, it is convenient to write the complete 
velocity potential which becomes 

4 = - $ 1 dX,Y> (so + zxo) - ~,(Ro+zx~)-~~(SI +zX2)) (B53) 

In the same manner as for the doublet panel method, we obtain the relations for the velocity 
by the gradient operator 

v = ( a a a 
T, 3 as 9 az ) 

Thus, we obtain 

v 4 = - ~{u(x,r)[vSo +v(Zxo)] 

+ (ux,uy,o) (so + zx0/277) 

-q@+-j+v(zx1)1 

- O,[oSl + v(zx2)l) 

Since the expression for the velocity potential contains the term 

(B54) 

in zxo of equations (B53) and (B48), we see that the contribution to the source velocity 
components from the panel shape parameters have some of the same singularities as the 
flat doublet panel. As we discovered from the doublet, expanding in the shape parameter 5 
acts as a differentiation of the basic flat panel aerodynamic inlfuence coefficients. 
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APPENDIX C: 
DESCRIPTION OF THE SPLINES FOR SUPERSONIC SOURCE 

AND DOUBLET PANELS 

Cl. SOURCE PANEL 

For each panel, an average plane is defined which passes through the panel center and 
midpoints of the lines joining the panel corners. On the panel projected onto this average 
plane, the source strength u is taken to be linear in the coordinates of this plane, i.e., 

The three parameters uo, ux, and uy which are needed to specify the source strength on each 
panel are not, per se, basic unknowns of the problem. Rather, they are calculated as needed 
in terms of the source strengths at the centers of the panels, which, in turn, are determined 
so that the solution meets the specified boundary conditions. 

The parameters of equation (Cl) are determined by a weighted least-squares fit to the 
source strength at the centers of the eight surrounding panels. That is, if the source strength 
at the center {i, vi of the ith of the 9 panels involved is called ci the quantity 

E= ; 
i= 1 

Wi (Ui - UO - uXEi - UyQi)2 ((3) 

is made stationary with respect to variations in uo, ux, and uy. The weight wi is equal to 
108 if i is the label of the center of the panel for which equation (Cl) is sought, and wi = 1 
otherwise. 

If the panel is at the corner of the network, there are three neighboring panels, which 
is enough to make this system determinate (see figure 94). 

Two points are worth noting about this representation of the source strength. First, 
there is little reason for the source strength to be continuous from one panel to the next, 
since source discontinuities do not introduce infinite singularities in the flow as doublet 
strength discontinuities do. Of course, in the limit as the grid is refined, we expect the 
discontinuities in the source strength to vanish, so that these discontinuities furnish a 
measure of whether the mesh is sufficiently fine. Secondly, since the source distribution within 
the panels is determined in terms of the source strength at the centers of nearby panels, the num- 
ber of unknowns governing the source strength is exactly equal to the number of panels. 
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C2. DOUBLET PANEL 

Since it was shown in section 3.7 that the jump in tangential velocity across a singularity 
distribution is related to the local value of the derivatives of the doublet strength, while the 
jump in normal flux is given in terms of the source strength, it is necessary to use a higher 
order representation of the doublet strength than of the source strength to achieve the same 
level of representation of their velocity fields. Thus, the doublet strength is represented by 
a quadratic: 

p=Ero +P,x+PyY+P,, x2/2 + P,yXY + pyyy2/2 (C3) 

For the six parameter spline, a quantity similar to equation (C2) is formed for the 
doublet strength in equation (C3), namely, 

E= ii Wk (&)+b+,t!, +py?7k +&ix k t 2/2 + k$ytk r)k + I-(yyqk 2/2 - ?'k) 2 (C4) 
k-l 

where hk is the value of the doublet strength’at {k, nk, the control point of the kth neighbor- 
ing panel (or point on network edge) projected upon the average plane of the panel for which 
the coefficients are to be defined. The quantity E is made stationary with respect to the 
coefficients of the quadratic defining the doublet strength. To facilitate the determination of 
these coefficients, we define the vectors: 

ci = (~0, I-+, my, ~-lxx, I-(XY, ~yy) 3 i = 1, 2,3, . . .a 6 

Zlki = (1, tk, qk, :k2/2, tkr)k, V&2) k not summed 
i= 1, 2,. . ., 6 

then 

E = k z 1 (ciaki - hk) 2wk 

from which 

(C5) 

e = ,$ 1 wk (ciaki - hk)ajk = ’ 

135 



and 

f f 

N 

k=l akj akiWk Ci = 2 Wkhkajk 
k=l 

Solving for ci yields 

akj afi Wk E wkAk ajk 
k= 1 

Equation (C6) may be expressed as the product of an N by 6 matrix with the vector of 
parameters hk: 

Ci = SPik N xh6k 
{ ) 

This is the basic relation for evaluating the coefficients for the six parameter spline. 

CC61 

For the nine parameter spline, a relation similar to equation (C4) is used but the spline 
is made to fit exactly the value of xk which corresponds to the center value of the panel for 
which we are seeking the doublet distribution. A weighted least squares fit is then made with 
the values of X for the adjoining panels. It was found that smoother pressure,distributions 
were obtained when the weights for the upstream panels were increased, with the highest 
weights (about 7) for the panels directly upstream. This weighting recognizes the predomin- 
ance of upstream influences in supersonic flows. 

As was shown in section 6, it is essential that the doublet strength be continuous across 
all panel edges if we are to avoid the infinite singularities emanating into the flow field from 
panel edges. This is accomplished by dividing the panel into eight subpanels and defining a 
quadratic distribution over each subpanel. The determination is accomplished in the stages 
following. 

For each panel, nine doublet strength parameters are defined as the values of the 
doublet strength at the nine vertices of the eight triangular subpanels strength at the nine 
vertices of the eight triangular subpanels by using equations (C3) and (C7). Since the 
definitions of 8 of these doublet strength parameters are associated with points on the- 
boundaries between adjacent panels, they are exactly the same for the adjoining panels. It 
will be shown that this achieves the desired continuity of doublet strength across panel 
boundaries for a quadratic doublet distribution. 

Six of the ten straight lines which bound subpanels contain three subpanel vertices. In 
figure 96 these are the lines ABC, DEF, GHI, ADG, BEH, and CFI. The doublet strength 
parameters associated with the vertices may, therefore, be fitted with quadratics along each 
of these six lines. 
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Since three doublet strength values along each line uniquely determine a quadratic, the 
doublet strength on a panel edge not only agrees with the doublet strength on the adjoining 
edge at the three common points, but also at ail other points of the line. By using piecewise 
quadratic distributions in the eight subpanels of figure 95, we can construct a nine parameter 
spline which is continuous everywhere in a network. This can be easily seen by considering 
figure 97, which shows values of doublet strength interpolated by the quadratic at the mid- 
points of the subpanels edges. Every subpanel has six values of the doublet strength which 
uniquely defines the quadratic inside the triangle. As seen in figure 98, continuity across 
subpanel edges is assured since the resulting quadratics from adjacent subpanels are uniquely 
defined on the panel edges by the three common values of doublet strength. 

In place of actually determining the doublet strength at subpanel midpoints, a quantity 
is defined for each edge which provides the required additional information. This quantity 
is 

Kij =p(Pi)+ V/J.(FJ l (Pj-Fi)/2 

=p(Fj) + V,U(Pj) . (Pi-Pj)/2 WI 

where Pi and Pj are the position vectors of the two endpoints of the subpanel edge. For a 
quadratic distribution, these two forms can be shown to be equal. Using equation (C3) for /J 
with points {i, vi and {i, we obtain 

Kij = 1-10 + Px(ti+Sj)/2 + PY (qi+l?i) 12 

+ PXX (titj)12 + pxy (Ei rlj + Ei rli)/2 

+ Pyy QiQjl2 (C9) 

which is seen to be symmetric in i and j. These quantities are obtained on the 12 subpanel 
edges corresponding to the lines DEF, GHI, ADG, BEH, and CFI by using equations (C3) 
and with the coefficients defined by equation (C7). Since the gradient of a piecewise quadratic 
is not necessarily continuous everywhere, we approximate the Kij value for the edges DH, HF, 
FB, and BD by a linear combination of the Kij for surrounding edges. For example, the value 
of Kij for the side DH is found by a linear combination of the Kij for the sides DG, GH, 
DE, and HE. For this evaluation we need to develop parameters associated with the departure 
of the panel from a parallelogram. 

We now calculate parameters Cj which measure the skewness o,f the panel. Referring 
to figure 98 we define the vector Pmn = Frn -Pi., , where Pm and Pn are the position vectors 
of the comer points. Then, for the upper quadrilateral of the panel, PlPoP9P5 in figure 98, 
we define constants Cl 1 such that 

&9=(1 f&$59+(1 fc2’)&9 
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where the tilda denotes the projection of the point on the average plane. If Cl 1 = C21 = 0, 
then the quadrilateral is a parallelogram. We eliminate C2 by performing the cross product of 
the equation with P69 and obtain 

Now Plg = P5g + P15, and since the crossproducts are vectors normal to the plane (or 
effectively scalars), we obtain for Cl 1 

z 

p69 x2pl5 
Cl1 = z 

p69 X F59 

Now the tilda marked vectors differ from the complete vectors by components normal to the 
average plane, hence, the value of Cl 1 can be expressed in terms of the points Fj by 

c 
1 

1 = @69xp15) l c 
(&I X&g) l h 

since the contributions to the numerator and denominator from the normal components of the 
vectors vanish. Similarly, eliminating Cl 1 by the cross product of the equation with P59 
yields 

since Plg = P69 + P16. For the remaining corners, we take the points P2P6PgP7, P3PgPgP7, 
and P4P8PgP5 and obtain the following formulas for CiJ: 

cl3 = cp89 xF37) l i?~ 

(Fgg x F7g) l F; 

cl4 = (p89 X F45) l z 

(Ffjg x Ejg) - ; 

(ClOJ 
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for C!$, 

c22 = (F26 x p79) l G 

(&jg X F79) . : 

c23 = 
(F38 x F7g) l :: 

(Pgg xP7g) l ?l 

c24 = 
(F48 xP5g) l ?l 

(Ygg x P5g) l 3 (Cl 1) 

We are now able to define the. Kij quantities for the subpanel edges DH, HF, FB, and BD 
in figure 96. Let Fi = 1 + Cl1 + C2r . For the value of K58 and side P5 - P8 in figure 98, we 
have 

Fl 
K58 = 1 + Fl cK59 + K89) + hl (K5 1 + K81) 

Similar results may be written down for the other edges, P5 - P6, P6 - P7, and P7 - P8. 

For each triangular subpanel we now have the values of the doublet strength at the 
comer points and values of Kij for each of the sides. The coefficients of the quadratic in 
equation (C3) then can be expressed in terms of these six quantities by 
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or 

= D-1 (Cl21 

where ~1, ~2, ~3 are the comer values of the doublet strength on the triangular subpanels, 
and Kl , K2, K3 are the values of the parameter Kij for the three sides of the subpanel. 
The matrix D is given by 

fl El VI 1;3/2 t1771 7?12/2 

1 1;2 712 t&2 52 772 772212 

1 53 
773 

t32l2 -53 73 ~3~12 \ 
1 (1+t2 771+72 

2 2 

1 52+t3 q2+‘?3 - E2 E3 - - 
2 2 2 

1 $1 +g3 771 +rl3 - - 
\ 2 2 

(Cl3) 

The matrix D may be inverted whenever the triangular subpanel does not degenerate into a 
line, for which we do not need the coefficients for P. 

Hence, within each panel we have a continuous piecewise quadratic representation of 
the doublet strength in terms of the nine doublet strength parameters. The doublet 
strength is also continuous with the doublet strength on neighboring panels. 

We shall now explain how the nine values of the doublet strength at the vertices of 
the eight panel subpanels in figure 96 are obtained. As in the case of the source distribution, 
it is convenient to regard as the basic unknowns the values of the doublet strength at the panel 
centers. This helps to assure a correspondence between the number of unknowns and the 
number of boundary conditions. For panels well within the network interior, the doublet 
strength parameter at a corner of a panel is determined by least-squares fitting of the 
quadratic in equation (C3) to the doublet strength at the centers of 12 nearby panels, as 
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shown in figure 99a by a means of equation (C7). The squared errors at the four panel 
mispoints closest to the corner point in question are given a weight of 103 while the outer 
uncircled points are weighted according to a formula which gives greater weight to points 
upstream of the point where the doublet strength is desired, namely 

Wk=l+M l+?) 
( 

where Rk is the vector distance between the central point and the kth outer point and e is 
the unit vector in the compressible direction (usually the freestream direction). 
Similarly, the doublet strength parameters at the midpoint of a panel edge is found by 
least square fitting a quadratic to the doublet strength at the centers of 12 nearby panels, 
the squared errors at the centers of the two panels bordering the edge being weighted at 
1 OS while the other points are weighted according to the formula. These arrangements are 
illustrated in figure 99a and 99b. 

The doublet strengths at panel corner points along network edges are required for the 
nine parameter spline. Because of the necessity of matching doublet strength across network 
edges, the determination of the doublet strength at panel comers on a network edge must be 
confined to the values of the doublet parameters along the edge. We recall from figure 14 
that singularities are provided at the midpoints of the panel edges bordering networks and at 
network corners. The corner values are the actual doublet strength. The midpoint edge values 
are the doublet strength for the six parameter spline; but for the nine parameter spline we use, 
instead of the doublet strength, the quantity 

xi = /.L(Fi-1) + 3 V/.l(Pi-1) .(Fi-pi-l) 

'L((Fi)++ V/J,(Fi) l (Pi-l-B,) 

In terms of these parameters, the comer values of doublet strength are given by 

- 

(C14) 

(C15) 

where Pi denotes the comerpoint and Mi the midpoints as shown in figure 100. This can be 
shown easily by substituting Xi+1 by the first of equations (C14) and Ai by the second, while 
noting that the gradient terms cancel. 
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Equation (Cl 5) is equivalent to straightening the edge and using a single variable to 
represent p along the edge. In terms of a single variable, then equation (C14) takes the form 

%+l=~i+l (Xi - Xi+l) 

Since we require p at the midpoint, we let xi+1 and xi be +l , respectively. Then along the 
panel edge, the doublet strength varies as 

Pi+1 -Pi 
P(X) = Pm + 2 

x + ( 
pi+1 +pimPrn 

2 ) 
,2 

,(C16) 

(C17) 

where pm denotes the value of the doublet strength at the midpoint of the panel edge. From 
equation (C 17), we have 

( > dC1 = 3ui+l + Pi-1 dx i+l 2 - 2Pm 
which gives for equation (Cl 6), after solving for pm, 

Pm' &+1/J + PiI4 + Xi+112 (Cl@ 

Thus, the panel comer values and panel midpoint values of the doublet strength are determined 
by the singularity parameters hi at the panel midpoints on the network edge by equations 
(C15) and (C18). 

With the values of the doublet strength at panel corners of the network edge defined, 
we are now able to compute the comer and midpoint values for all the panels in the network 
for application to the nine parameter spline. For the panels near the network edges, we 
obtain the corner values of the doublet strength by using equation (C3) and (C7) to obtain a 
least squares fit with neighboring panel center values and with network edge values. 
Figure 99 shows the fit for interior panels well within the network. For panels close to the 
network edge, the panel comer and edge midpoint values are computed with a least square fit 
with neighboring doublet strength values which also include corner points lying on the network 
edge. Figures 10 1 a and 10 1 d show a fit made with only ten points. However, the doublet 
strengths at the two corner panel points lying on the network edge are expressed in terms of 
the two basic parameters on the network edge at the panel midpoints of the adjoining panels. 
Thus, the vector of coefficients for equation (C3) is computed in terms of a matrix product 
of a 12 by 6 matrix and the neighboring hk basic singularity parameters. In figures 101 b and 
101 c a least squares fit of eleven points is used. All cases result in a 12 by 6 matrix with the 
12 basic singularity parameters. 
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Naturally, special attention must be given in cases for which the panels are triangular 
rather than quadrilateral, if only because it is impossible to fit a quadratic to three values at 
a common point, However, the same basic selection of unknowns serves to define enough 
doublet strength parameters to fix piecewise continuous quadratics in each of the six subpanels 
of any triangular panel (see fig. 102). 
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APPENDIX D: 
DESCRIPTION OF THE PILOT CODE FOR COMPUTING LINEARIZED 

SUPERSONIC FLOW OVER AIRCRAFT CONFIGURATIONS 

The basic formulas for the computation of supersonic flow by the improved higher order 
panel method have been derived in the foregoing sections. These derivations are detailed 
and somewhat lengthy with the formulas actually to be computed scattered throughout the 
document. To present an overall view of the method we shall describe, in some detail, the 
basic calculations used in the pilot code to compute linearized supersonic flow and refer to 
the equations and the sections in the text which are applicable. This section is not meant to 
be a description of inputs and procedures to be applied by the user in running the pilot 
code, since a document written for this purpose is available in reference [321. 

Section 3 presents the basic theory of linearized supersonic flow following to some 
degree the work of G.N. Ward [ 101. Section 4 gives a brief general description of the panel 
method. The aerodynamic influence coefficients are derived and a discussion of their 
properties is given in sections 5 through 9 for both the subinclined and superinclined panels. 
Some of the pure mathematical details have been relegated to the appendices A and B. Since 
the formulas for the influence coefficients were derived for subinclined panels parallel to the 
freestream direction and superinclined panels normal to the freestream, the influence 
coefficients must be transformed for panels at other inclinations by means of the transforma- 
tion matrices derived in section 10. If panels are located well within the upstream Mach 
cone from a control point, then the computations can be made more economical by using the 
far field expansions described in section Il. 

D 1. BASIC GEOMETRY AND PANEL DEFINING QUANTITIES 

The first step in using a panel method is to divide the configuration into networks. The 
network boundaries are distinguished by discontinuities in the configuration geometry such 
as wing and body junctions. The spline representation of source and doublet assumes smoothly 
varying geometry so the body is divided into networks and appropriate matching conditions 
are used across network boundaries for the doublet strength. Networks also may be dis- 
tinguished by the boundary conditions applied to them. For this reason, no network can con- 
tain both subinclined and superinclined panels. 

Each network is divided into panels by a double array of grid points on the surface. The 
rows and columns are chosen so that the cross product of a vector in the column direction 
with the vector in the row direction is pointed in the direction of the positive outward normal 
to the surface into the fluid. 

The boundary conditions are applied at the center of the panel and for this we require 
the unit normal vector. The panel normal is chosen as the normal to the average plane or to 
the central parallelogram of figure 98. This is defined as the cross product of the vectors 
formed by the lines joining the midpoints of the sides of the parallelogram or 
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F6+F7 
2 

I( 
H6+F7 

2 

Normals are also defined for the subpanels. Although these are not used for boundary 
conditions, they are used to define the transformation matrices required for the aerodynamic 
influence coefficients of each subpanel. Also computed is the center of each panel or 
subpanel. It is defined as the average of the corner points and is the origin of the coordinates 
in which the formulas for the aerodynamic influence coefficients are expressed. For 
supersonic flow, one of these coordinates is aligned with the projection of the freestream 
velocity on the panel. 

The control points at which boundary conditions are applied are then computed, the 
locations of which are illustrated in figures 13 and 14 for the source and doublet networks with 
analysis boundary conditions. For the nine parameter spline, the panel center control point 
must be away from exact center because of this point being a common vertex to the four 
central subpanels of figure 98. 

The control points at the edges of doublet networks are used for matching doublet 
strength across network boundaries. For the 6 parameter spline and for earlier versions of 
the nine-parameter spline, the edge matching control points are moved into the network an 
infinitesimal distance. This is essential since the infinite singularity at the panel edge in section 
6 is used in the six parameter spline to match the doublet strength at network boundaries. 
For the nine parameter spline, the continuity of the doublet strength allows us to drop all 
line vortices at panel edges and in the earlier version, a simulated incompressible vortex is 
introduced at network edges as described in section 4 with equations (4.1) and (4.2) to match 
doublet strength. The latest version matches doublet strength exactly by prescribing regular 
downwash boundary conditions at the edge control points for the upstream network to 
determine the doublet strength and using these values in the downstream network, to obtain 
exact matching of the doublet strength across the two networks. 

Up to this point, the calculations are carried out without regard to whether the flow is 
subsonic or supersonic or for any choice of Mach number. In summary, we have computed 
the following quantities: 

1. Designation of networks and the double array of panel comer points on the surface 
corresponding to each network. 

2. Additional points of each panel used to define the eight triangular subpanels. 

3. Unit normals to each panel and subpanel. 

4. Location of the control points at panel centers for the boundary conditions and control 
points at network edges for matching doublet strength. 
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D2. TRANSFORMATION MATRICES 

The aerodynamic influence coefficients were developed for a scaled coordinate system 
with subinclined panels parallel to the free stream and superinclined panels normal. To calcu- 
late the transformations which convert the aerodynamic influence coefficients for any general 
inclined panel, we must introduce the Mach number at which the pressures and velocities 
are desired. 

These transformations were derived in section 10. With x , y , z designating the 
coordinate system on the subpanel whose origin is at the subpanel ten er, the transformation ppP 
from a reference system xr, y,, zr to the panel system is described by the equations (10.37) 
(10.38), and (10.39) or 

(xp, YP, zp) = {AZ) {AlI {Ar\ 01) 

where x0, y0, z0 are the coordinates of the subpanel center in reference coordinates. 

For source influence coefficients there is a correction required which is given by the 
Jacobian of the transformation from the reference system to the panel coordinate system in 
equations ( 10.42) for subinclined panels and ( 10.44) for super-inclined panels. 

D3. CALCULATION OF AERODYNAMIC INFLUENCE COEFFICIENTS 

The influence coefficients to be calculated depend upon the boundary conditions 
that are to be applied to the surface. The pilot code is set up on the assumption of a 
combined source and doublet panel system. A single singularity surface is selected by set- 
ting the unrequired singularity equal to zero. The most likely boundary conditions are the 
potential type boundary conditions, in which the source strength u is defined to cancel the 
the normal component of the free stream velocity on the outer surface, i.e., 

fJ=-0.2 CD21 

and the perturbation potential on the interior surface of the configuration is set equal to 
zero, or 

c$- = 0 (D3) 

These boundary conditions were shown in section 3.8 to satisfy the vanishing,of the normal 
component of the linear mass flux on the outer surface and to eliminate the interior flow 
perturbations. Equation (D3) leads to a set of simultaneous linear equations to be solved 
for the doublet parameters. 
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Since the source parameters are defineB by equation (D2) they contribute to the right 
hand side of the simultaneous equations. 

The boundary conditions in equation (D3) is applied to the downstream network edge. 
On the upstream network edge of the adjoining network we apply the boundary condition 
in equation (4.1). 

The contribution from a panel edge to the potential from a quadratic distribution of 
the doublet strength is given in equation (5.17) where the functions are derived in Appendix 
A. The contribution of the entire subpanel to the perturbation potential at the control point 
is found by evaluating and summing equation (5.17) for each end point of the side and for. 
each side by proceding counter-clockwise around the panel. The quantity p and its derivatives 
are defined in equation (C3) evaluated for the x, y, z coordinates of the control point where 
the boundary conditions are to be computed. Substituting equation (C3) for I-( into equation 
(5.17) and combining coefficients yields a relation of the form 

#=Aici (D4) 

where the vector Ci is defined in equation (C5). The contribution to the velocity potential 
from the panel can be expressed in terms of the basic parameters at the panel centers and 
network edges by equation (C7) yielding 

$ = Ai (SPik] Nx6 hk (D5) 

A similar relation holds for the contribution to 4 from the source distribution; but with 
the xk for the source panels known from the boundary conditions of equation (D2), it 
contributes to the right hand side of the boundary condition equation (D3). The potential 
for a panel edge from the source distribution is given in equation (8.6). The contribution to 
the entire subpanel or panel is found by evaluating and summing equation (8.6) for each edge 
and at both endpoints proceding around the panel in a counter-clockwise direction in the 
same way as for the doublet panel. 

The pilot code computes the coefficients of the hk in equation (D5) for each panel at 
all the control points before proceding to the next panel. A panel is selected and the control 
points for all the panels are transformed into the coordinate system of the subpanel by 
equation (Dl). Then a test is made to determine if the selected panel lies within or is cut 
by the Mach cone emanating upstream from the control point. The aerodynamic influence 
coefficients are not computed for those panels lying outside of the math cone. The contri- 
bution from the selected panel is computed and stored for each control point. Then the 
program takes the next panel in order, repeats the procedures, and sums the results with 
the previous calculations for each control point. 
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Similar procedures are followed when velocity components are computed at the control 
points. The velocity components for the quadratic doublet distribution are given in equation 
(6.1) for the six parameter spline and in equation (7.4), (7.6), and (7.9) for the nine para- 
meter spline, in which the line vortices have been removed. The result of the computations 
of the boundary conditions in equation (D2) and (D3) lead to a set of simultaneous equations 
of the form 

to be solved for the doublet parameters xk. Here, Nd and N, are the numbers of doublet 
parameter and source parameters, respectively. Once the hk are known, a similar procedure 
is used to compute the velocity components and the pressure at each control point. 

For the combined source and doublet panels with the boundary conditions of equations 
(D2) and (D3), the tangential perturbation velocity components on the outer surface can be 
computed by differentiating the doublet strength on the panel. With the transformation 
from reference coordinate to panel coordinate system given by equation (Dl), the tengential 
velocity vector V, in the reference system is given in terms of the subpanel tangential velocity 
VP by 

where the T denotes the transpose of the matrix. The perturbation velocity is used to compute 
the pressure coefficient using equation (3.10) or the isentropic relation. 

When the configuration also contains superinclined networks representing inlets, the 
procedure as outlined above is followed except the boundary conditions on the interior or 
downstream side of the network are 

Since there are generally subinclined panels in the zone of dependence of the superinclined 
network, these boundary conditions yield relations similar to equation (D6) with the left 
hand side containing unknown source parameters as well as doublet. 

The velocity potential for superinclined doublet panels is given in equations (9.12) and (9.16) 
with the functions QI and w0 derived in Appendix A, section A9. The velocity potential for 
source panels is given in the equation following equation (9.16). The perturbation velocity 
components for the superinclined doublet panels are given in equations (9.30) and (9.3 1) and 
are used only in the nine parameter spline, since the line integrals of the doublet strength 
have been dropped. The velocity components from the superinclined source panel are pre- 
sented at the end of section 9.3. 
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APPENDIX E: 
RELATIONSHIP OF SUPERSONIC PANEL INFLUENCE COEFFICIENTS 

TO SUBSONIC PANEL INFLUENCE COEFFICIENTS 

The subsonic panel influence coefficients (ref. [ 31) were obtained by evaluating the 
integrals of the form 

H(M,N,K) = 
(E-x)~-~ (q-~)~-’ d.$ds 

Iz 
Rk 

and 

F(M,N,K) = I (&x)M-* (q-y)N-1 d!J 
L Rk 

where 

R =&-x)2 + (q-y)2 + h2 

(El) 

WI 

Here IZ is the panel surface (assumed to be flat for present purposes) and L is a typical edge. 
Also (x, y, h) are the coordinates of the field point in the local panel coordinate system and 
(5, q, 0) are the corresponding coordinates of the integration point. 

The integrals in equations (El) and (E2) can%e formally defined for a subinclined panel 
in supersonic flow for which R becomes the hyperbolic distance defined by 

R =&x)2 - (q-y)2 - 112 (E3) 

The H integrals satisfy three recursion relations obtained in the same manner as for subsonic 
flow. We have 

H(M, N, K-2) = H(M+2, N, K) - H(M, N+2, K) - h2 H(M, N, K-2) (E4) 

(K-2)H(M, N, K) = (M-2) H(M-2, N, K-2) - ; VE F(M, N-l, K-2) (E5) 
1 
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(K-2) H (M, N, K) = - (N-2) H (M, N-2, K-2) + % 
1 ut 

F(M, N-l, K-2) (W 

where the summation is over the panel edges. These recursions can be combined to produce 
the following, more useful recursions: 

(M-N-K) H (M, N, K) = h2(M-2) H (M-2, N, K) - h2 ; v 
1 E 

F(M-1, N, K) 

4 
+ C a F(M,N 0 

1 
(E7) 

(M-N-K) H (M, N, K) = -h2 (N-2) H (M, N-2, K) + h2 ; Vq F(M, N-l, K) 
1 

4 
+ Z a F (M, N, K) 

1 
033) 

(K-2) h2H (M, N, K) = (M+N-K-2) H (M, N, K-2) - g a F (M, N, K-2) 
1 

(E9) 

Here, a vt and v are defined as in the subsonic case, i.e., 
theedgeyand ,“=c. (E-x,q-y). 

$ = (VE vq) is the exterior normal to 

The F integrals also satisfy three recursion relations obtained in the same manner as 
in subsonic flow. We have 

F(M+2,N,K)-F(M,N+2,K)-h2F(M,N,K)=F(M,N,K-2) (Elf3 

VEF (M+l, N, K) + v,F (M, N+l, K) = a F (M, N, K) (El 1) 
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where 

-(M-l jF(M-1, N, K-2) vV + (N-l j F (M, N-l, K-2) u,$ 

+ (K-2) F (M+l, N, K) vq + (K-2) F(M, N+l, Kj VE = E (M, N, K-2) (El21 

(&-x)M-1 (q-yjN-1 
2 

E(M,N,Kj = 
Rk 

I 
1 

(El3) 

where the numbers 1 and 2 denote the endpoints of the subpanel edge. Because of the 
limited number of terms required for the flat panel supersonic case without line vortex terms 
no attempt has been made to recombine (ElOj, (El lj, and (El2) into more useful recursion 
relations. 

In order to evaluate the fundamental integrals H( 1,1,3) and F( 1 ,l ,l j it is useful to make 
the following definitions. Let 

Then 

and 

and 

b = vr;2 - ~~23 g2 = a2 - bh2 3 and Q = vq(&xj + vt(r/-yj (El4) 

R2 = (g2 - Q2)/b 

F(l,l,l) =+ Q2 dQ 
-ii 

Ql 

H(1, 1,3) =- 

Ql 

(El 5) 

(E16) 

For linear source and quadratic doublet (without line vortex terms) influence coefficients 
F(l,2,1) and F(2,l ,lj are also required, and these may be obtained via equations (El 1) and 
(El 2). Upon considerable analysis we obtain the following evaluations: 

(El7) 
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hH (1,1,3) = 

0 9 h = 0 (point not on panel) 

T sign (hug) , Rl = R2 = 0 (wedge region) 

tan-l [ haF 1 I (Rl R2+h2F2)] , otherwise 

(El@ 

where 

Fl = 
t 

(Q1R2-Q2R1)/g2 3 b20 

(R22 - R12)l(Q1R2+Q2R1) , bI0 
(El9) 

F2= 
(bR&+Q1Q2)lg2. b20 

(s2-Q12-Q22)l(bR,R2-Q1Q2) bI0 W0) 

and the subscripts 1 and 2 on R and Q designate the quantities evaluated at the two ends of 
the side. Note that 

F22+bF12 = 1 Wl) 

We also have 

d& 3 Rl =R2=0 
1 b>O 

F(l,l,L)= 

- E[l-be2/3+b2e4/5-b3&17+...],F2>>m IF11 

where E = Fl/F2 

032) 
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and 

F(1,2,1)= 

and 

- [ q(Rz-Rl) + av$ (l,l,l)] /b ; b#O 

[- v* @2-R& R2 + Q2 R1(7)1-Y)- QlR2 (n2-Y)] /g2F2 

- avn ~3 l/3 - be215 + b2e4/7 + . . .] [ ; F+->~ IF11 

W3) 

F(2,1,1)= -vn (R2-Rl) +av[F(l,l,l)-2qvgF(1,2,1) W4) 

The relationship between the calculations of equations (1) through (24) and those of 
Appendix A will now be established through the following identities: 

II = vq ([ - x) + ug (77 - y) = - vqsm - qs = vg (sm/m - s) 

d(Z = vt (l/m2 - 1) ds 

h = -l$jvg 

m = -v&j 

xm = -a/vt 

= (a+, - Qvt) /b 

t = (-avt + Qvn)/b 

QI = -hH (1,1,3) 

WO =-zq F (l,l,l) 

hW1 + xmwO = vt F (2,1,1) 

w1 = v.g F (1,2,1) 
A 
xm = -a/v9 
A 
WO = vrl F (l,l,l) 
A 

w1 = -vn F(1,2,1) 

W5) 

W6) 

W7) 

W8) 

(EW 

(E30) 

(E31) 

(E32) 

0533) 

(E34) 

(E35) 

(E36) 

(E37) 
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p2 

Figure l.-Subpanel Structure of Basic Four Point Panel Showing The 
Five Planar Areas and Eight Triangular Subpanels 

Figure 2.-Propagation of a Disturbance in Subsonic Flow 

- 
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Figure 3. -Propagation of a Disturbance in Supersonic Flow 
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Figure 4.-Domains of Influence and Dependence of The Point 
x0, yo, z. in Supersonic Flow 
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Cyltndcr 

Figure 5.-Mass Flow Calculation For Supersonic Source 

Figure 6.- Volume And Surfaces For Derivation of Integral Equation 
For Superinclined Surfaces in Supersonic Flow 
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Figure 7.-Volume And Surfaces For The Uniqueness Proof from 
Boundary Conditions on Superinclined Surfaces in Supersonic Flow 

uo - 0 
I'1 - Mach surface from leading edge 

0 

r - Upstream Uach cone from point x,y,z , ' 

SW = Sublnclined surface 0 
2 0 

0 

Figure 8.-Cross Section at yo = y of The Volumes and Surfaces For 
Deriving The Integral Equation For Subinclined Surfaces 
in Supersonic Flow 
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Figure 9.-Cross Section at y = 0 of The Volumes And Surfaces For 
The Uniqueness Proof For Subinclined Surfaces in Super- 
Supersonic Flow 

Figure IO.-Cross Section of Volume at y = Constant And Surface 
For Calculating Velocity Neglecting Edge Vortices 
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Wake7 

Figure 1 l.-Example of Wing and Body Paneling 



Figure 72.-Subpanel Structure of Basic Four Point Panel Showing 
The Five Planar Areas And Eight Triangular Subpanels 

161 



Source/Analysis 

pJT-pjq 

Figure 13.-Schematic Location of Control Points And Corresponding 
Values of Source Singularity Strength For Analysis 
Networks 

Doublet/Analysis 

Figure 14.-Schematic Location of Control Points And Corresponding 
Values of Doublet Strength For Analysis Networks 

(Doublet/Design 

a. Control point locations 

(Doublet/Design 

b. Singularity value locations 

Figure 15.-Schematic Location of Control Points And Corresponding 
Values of Doublet Strength For Design Networks 
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Figure 16.-Illustration of Mach Wave Propagation And Reflection of Interior Perturbations 

- x + (rl-Y)/m 

Figure 17.-Region of Integration For Subinclined Panel Edge 
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Figure 18.-Illustration of Combining Edge Integrals to Find Integration Over a Panel 
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Figure lg.-Mach Wedge Region Behind Supersonic Panel Edge 
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I n I 

lb >I M 

a. Mach cone intersection inside panel 

b. Mach cone intersecting one side of panel 

C. Mach cone intersecting 
panel corner 

d. Mach cone intersecting panel 
corner cone and,opposite side 

Figure .%.-Examples of Mach Cone Intersections With Superinclined Panel Aligned 
Normal to The Free Stream 
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Ye .ze 
Control potnt projection 

Figure 21.-Illustration of Panel Edge Coordinates With Panel Edges Specified 
Counterclockwise on Exterior or Downstream Side of 
Superinclined Surface 

L 
I- Y 

Yl *Zl 

tantl = =m 

Figure 22.-Relation Between Panel And Edge Coordinate Systems of 
Superinclined Panel 
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Figure 23.-Transformation From Reference Coordinates xr,yr,zr To 
Compressible Coordinates xc~yc,zc 

-. . . 
. . . 

Figure 24.-First Angie of Rotation For Panel Coordinate System 

Figure 25.-Illustration of Second Angle of Rotation For Subsonic 
Flow or of Oblique Transformation For Supersonic Flow 
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Present method 

---- Exact(Ref. [17] to [20]) 

Shock detachment angle 27' 

0 10 20 30 40 50 60 

Cone half-angle, deg 

Figure 26.-Comparison of Pressure Coefficient on Cones at Zero 
Angle of Attack With Exact Theory 

.3 

[\ - 

/ :\,\--- 
Mass flbx boundary condition 

--- Velocity boundary condition 

Figure 27.-Comparison of Three Methods for Computing Pressure Coefficients on 
10’ And 15” Half-angle Cones at Zero Angle of Attack as a Function of 

Mach Number 
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rExact solution 

LVelocity boundary conditions y 

flux boundary conditions 
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Figure 28.-Comparison of Pressure Coefficients Computed by Zero Normal Mass Flux Boundary Conditions And 
Zero Normal Velocity Boundary Conditions 
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T - Exact, method of characteristics 

a Axisymmetric source 
.04 @ present source panel method 

. 

h Constant strength source panels 

M=V-T 
.02 

CP a 

-.04 1 

Figure 29.-Comparison of Four Methods For Computing The Pressure Coefficient on The Spindle r = 0.08x2(1-x) 



Isometric View 

Figure 30.-Random Paneling on the Spindle r = x(1-x)/5 Chosen to Test Stability of Source Panel Method 



Exact, method of characteristics 

. 
Panel method 

Figure 37. -Pressure Distribution From Random Paneling on The Spindle r = x/1-x)/5 at Zero Angle of Attack 
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b/a = 0.532 
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Figure 32.-Comparison of The Pressure Distribution by The Present Method With The 
Van Dyke Second Order Theory For The Elliptic Cone Having a Maximum 
Half Angle of 14” And Fineness Ratio of 0.532 
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Cone maximum 

- 'Van Dyke [21] second order theory 

0 Present method 

Maximum cone half-angle = 15' 

b/a = 0.3 

M =$- 
Zero angle of attack and yaw 
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Figure 33.-Comparison of The Pressure Distribution by The Present Method With The 
Van Dyke Second Order Theory For The Elliptic Cone Having a Maximum 
Half Angle of 15” And a Fineness Ratio of 0.3 
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- Van Dyke second order theory 

0 Present method 

Maximum cone half-angle = 18.4' 

b/a = .33 

M= 1.81 

Zero angle of attack and yaw 
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Figure 34.-Comparison of The Pressure Distribution by The Present Method With The 
Van Dyke Second Order Theory For The Elliptic Cone Having a Maximum 

Half Angle of 18.4” And a Fineness Ratio of 0.33 
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cP 
0.20 
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0 Present method 

Maximum cone half-angle = 30' 

b/a = 0.2 

M=F 

Zero angle of attack and yaw 
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Azimuth angle 0 

- 
3 

- Van Dyke second order theory 

Figure 35.-Comparisori of The Pressure Distribution by The Present Method With The 
Van Dyke Second Order Theory For The Elliptic Cone Having a Maximum 
Half Angle of 30” And a Fineness Ratio of 0.2 
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P 
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0.10 

0 

Cone maximum 

Elliptic coordinate 
paneling 

Y = ax sin q 

z = bx cos r) 

- Van Dyke second order theory 

-o- Present method 

Modified pressure near 
stagnation points 
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Maximum cone half-angle = 30' 

b/a = 0.2 

M=p 

Zero angle of attack and yaw 
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rl 

Figure 36.-Comparison of The Pressure Distribution by The Present Method With The 
Van Dyke Second Order Theory For The Elliptic Cone Having a Maximum 
Half Angle of 30” And Fineness Ratio of 0.2 With Refined Paneling And 
Modified Pressure Calculation For Near Stagnation Conditions 
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Max angle = 17.5' 

- Mass flux b.c. 
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Zero angle of attack and yaw 
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Figure 37.-Comparison of Pressure Distributions on an Elliptic Cone Resulting From 
Mass Flux and Velocity Type Boundary Conditions 
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Angle of attack = 0.01 Radians 

Linearized theory- 
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by Jones and Cohen [23] 

0 Doublet panel method with 6 parameter spline 
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Figure 38.-Comparison of Pressure Distribution From Planar Doublet Panel Method 
With Linearized Theory For a Yawed Delta Wing 
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'-Theory 

0 Doublet panel method 

Data line 1 

A Doublet panel method 

Data line 2 

M=fl 

Six parameter spline 

Zero angle of attack and yaw 

Figure 39.-Comparison of Pressure Distribution on Parabolic Cambered Wing From 
Planar Doublet Panel Method With Exact Linearized Theory 
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Figure 40.- Comparison of Downwash Computed From Planar Doublet Design Method 
With The Actual Wing Slopes on The Line N = 1 For Cambered Wing in 
Figure 39 



Wing streamwise slope 

0 Design downwash 

N-2 
Maximum AW = 0.005 

M=V-Z- 
Six parameter spline 

Zero anale nf nttwk 

N = pJ 

Analysis 
Network 
80 panels 

01 I I I I I I I I I 4 
.l .2 .3 .4 .5 .6 .7 .8 .9 1.0 

Figure 41.-Comparison of Downwash Computed From Planar Doublet Design Method 
With Actual Wing Slopes on The Line N = 2 For Cambered Wing in Figure 39 
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Figure 42.- Comparison of Pressure Distribution on Symmetric Thick Wing Having Same 
Upper Surface Slopes as in Figure 39 With The Exact Linearized Theory Solution 
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- Source panel method 

--'-- Linear theory 

+-+ 2nd order expansion 

(Shapiro[24], page 576) 
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Figure 43.-Illustrating Advantage of Surface Paneling With Exact Boundary Conditions Over 
Planar Paneling With Linearized Boundary Conditions 
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Figure 44.-Coefficient of Pressure on Outer Surface of Inlet Nacelle by Source Panel Method 
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Figure 45.-Coefficient of Pressure on Outer Surface of Inlet Nacelle by Combined Doublet- 
Source Panel Method 



Figure 46.-Paneling on Carlson Wing 2T 
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Figure 47.-Comparison of Pressure Distribution Computed From Combined 
Doublet-source Panel Method With Experiment on Strips 2 and 4 
of Carlson Wing 2T 
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Figure 48. -Comparison of Pressure Distribution Computed From Combined 
Doublet-Source Panel Method With Experiment on Strips 6 and 10 
of Carlson Wing 2T 
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Figure 49.-Paneling of Leading Edge Region of The Parabolic Arc Cambered Wing 
in Figure 39 Which Showed Instability in The Solution 
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Figure SO.-Comparison of Pressure Distribution on Row 1 of Upper Surface of The Parabolic 
Cambered Wing Using Three Different Splines And The Paneling of Figure 49 



.44 

cPu 

.40 

.36 1 

.32 ! 

.28 L 

Legend 

0 Least square spline (6 coefficients/panel) 
0 Corner point continuous spline (6 coefficients/panel) 
A Almost edge continuous spline ( 8 coefficients/ panel) 
() Edge continuous spline (9 coefficients/panel) 
- Theory 

Row 2 
30° sweep angle 
5% parabolic arc camber profile 

8 
A 

El 

a 
0 

.l .2 .3 .4 .5 .6 .7 .8 .!I 1.0 

Spanwise variable Y 

Figure 51.-Comparison of Pressure Distribution on Row 2 of Upper Surface of The Parabolic 
Cambered Wing Using Three Different Splines And The Paneling of Figure 49 
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Figure 52.-Comparison of Pressure Distribution on Row 3 of Upper Surface of The Parabolic 
Cambered Wing Using Three Different Splines And The Paneling in Figure 49 
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Figure 53.-Examples of Successful And Unsuccessful Paneling of The Parabolic Cambered Wing 
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Figure #.-Arbitrary Paneling of The Flat Delta Wing Used to Test The Stability of The Nine 
Parameter Doublet Spline 
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Figure 55.-Paneling on The Forebody of The B- 1 Bomber 
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Figure 56.-Comparison of The Pressure Coefficient on The B- 1 Forebody Computed From The 
Doublet Gradient With Experiment And With The Finite Difference Solution 
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Figure 57.-Comparison of The Pressure Coefficient on The B- 1 Forebody Computed From The 
Aerodynamic Influence Coefficients Using The Six Parameter Spline With Experiment 

And With The Finite Difference Solution 
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Figure 58.-Comparison of The Pressure Coefficient on The B- 1 Forebody Computed From The 
Aerodynamic Influence Coefficients Using The Nine Parameter Spline With Experiment 

And With The Finite Difference Solution 
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Figure 59.-Comparison of Pressure Coefficient on The Carlson Wing Computed by Sources Alone 
With Experimental Measurements at Span Stations 2 and 4 
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Figure 60.-Comparison of Pressure Coefficient on The Carlson Wing Computed by Sources 
Alone With Experimental Measurements at Span Station 6 and 10 



-. 6 

cp -*4 
-. 2 

M= 2.05 

0 

.2 

.4 

Strip 2 

-. 6 

-. 4 
CP 

-. 2 1 

-Doublets and sources 

0 Experiment[26] [27] 

f 
Upper surface 

L Lower surface 

Figure 61.-Comparison of Pressure Coefficient on The Carlson Wing Computed by Combined 
Doublet-source Panels Using The Nine Parameter Spline With Experiment at Span 

Stations 2 and 4 
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Figure 62.-Comparison of Pressure Coefficient on The Carlson Wing Computed by Combined 
Doublet-source Panels Using The Nine Parameter Spline With Experiment at Span 

Stations 6 and 10 



Z = Constant (typical) 

Figure 63.-Stream Surface Taken From Exact Solution For Flow Past Cone And Defined by a 
Plane Parallel to The Shock Axis Cutting The Conical Shock 



M = 1.5 

Shock wave angle = 42.5' 

Figure 64.-Geometry of Stream Surface Generated at The Intersection of Conical Shock 
With Plane Parallel to The Shock Axis 
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Figure 65.-Pressure Distribution on Upper Surface of Asymmetric Configuration Bounded 
by Surface of Figure 64 and x,y Plane Using The Nine Parameter Spline With 

Combined Doublet-source Panels 
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Figure 66.-Pressure Distribution on Upper Surface of Symmetric Configuration Bounded 
by Surface of Figure 64 And Its Reflection in The x,y Plane Using The Nine 

Parameter Spline With Combined Doublet-source Panels 
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Figure 67.-Pressure Distribution on Upper Surface of Asymmetric Configuration 
Bounded by Surface of Figure 64 And x,y Plane With Additional Doublets 
Distributed Over The Mean Surface With Zero flormal #ass Flux Boundary 
Conditions 
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Figure 68. - Pressure Distribution Near Leading And Trailing Edge of Delta Wing With 
Sharp Supersonic Leading Edge Using The Nine Parameter Doublet Spline 
With Combined Doublet-source Panels 
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Figure 69.-Pressure Distribution Near Trailing Edge of Delta Wing With Sharp Supersonic 
Leading Edge Using The Nine Parameter Spline With Combined Doublet-source 
Panels 
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Figure 70.-Pressure Distribution Near Trailing-Edge of Delta Wing With Sharp Subsonic 
Leading Edge Using The Nine Parameter Spline With Combined Doublet-source 
Panels 
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Figure 71.-Pressure Distribution Near Leading Edge of Conical Flow Stream Surface Using 
The Nine Parameter Spline With Combined Doublet-source Panels 
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Figure 72.-Effect of Paneling on x Component of Outer Surface Normal on The Triangular 
Panels of The Conical Stream Surface 



Figure 73.-Paneling on Wing/Body of NASA Memo lo-15-58L With Two Axes of Symmetry 
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Figure 74.-Pressure Distribution Along Top of Body on Wing/body of NASA Memo lo- 15-58L 
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Figure 75.-Pressure Distribution on The Wing of The Symmetrical Wing/body of NASA Memo lo- 15-58L 
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Figure 76.-Paneling on The Arrow Wing/body With The Straight Wing 
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Figure 77.- Pressure Distribution on The Wing of The Arrow Wing/body of Figure 76 With 
Experimental Values at 9%, 20%, and 35% Span Locations and Computed 
Results at 12.8%, 22%, and 32% Span Locations 
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Figure 78.-Pressure Distributions on Wing of The Arrow Wing/body of Figure 76 With 
Experimental Values at 50%, 65%, And 80% Span Locations And Computed 
Results at 52%, 61.5%, and 80% Span Locations 
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Figure 79.-Paneling on The Arrow Wing/body With The Twisted Wing 
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Figure 80.-Pressure Distributions on The Twisted Arrow Wing/body Combination of 
Figure 79 at 9%, 20%, And 35% of Span Locations 
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Figure 81.-Pressure Distributions on The Twisted Arrow Wing/body Combination of 
Figure 79 at 50%, 65%, and 80% Span Locations 
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Figure 83.-Example of Superinclined Network to Close Inlet on a Nacelle 
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Figure 84.-Comparison of Pressure Distributions Along Two Azimuth Positions, n/24 And 51r/24, 
on The Exterior Surface of The Nacelle For The Flows Calculated With And Without 
Superinclined Network in The Presence of a Perturbation From Constant Upstream 
Source Panels 
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Figure 85.-Comparison of Pressure Distributions Along Two Azimuth Positions, 3n/8 And 
13n/25, on The Exterior Surface of The Nacelle For The Flows Calculated With 
And Without Superinclined Network in The Presence of a Perturbation From 
Cons tan t Upstream Panels 
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Figure 86.-Comparison of Exterior Pressure Distribution on The Exterior Surface of The Nacelle 
Containing an Interior Superinclined Network With The Lighthill Solution 



Figure 87.-Top And Side Views of Paneling on The L ES 216 Supercruiser 



Figure 88. -Perspective View of The Paneling on The L ES 2 16 Supercruiser 
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Figure 89. -Wing Pressure Distributions on The L ES 2 16 Supercruiser 



Figure 90.~Mach Wedge Region Behind Supersonic Panel Edge 
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Figure 91.-Evaluation of wo For One Edge Endpoint at Points on The Panel Plane 
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Figure 92.- Evaluation of wo For Both Endpoints of Panel Edge at 
Points on The Panel Plane 
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Figure 93.-Evaluation of 01 on The Panel For Panel Subsonic Leading Edges 



Panel No. Other center panel values of source strength used in 
determining source strength in a given panel 

1 2,4,5 

2 1,3.4,5,6 

5 1,2,3,4,6,7,8,9 

Figure 94.-Panels Used in Determining Source Strength From !Veighted 
Least Square Fit 

Figure 95.-Illustration of Subpanels Into Which Basic Four Point Non-planar 
Panel is Divided 
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Figure 96.-Illustration of Points at Which Doublet Strength Values Are Used 
to Define The Quadratic Distribution on Each Subpanel 

Figure 97.-Illustration of How Continuity of Doublet Strength is Obtained 
at Subpanel Edges 
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Figure 98. - Illustration of Panel Points Used to Measure 
Skewness of Panel 
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Figure 99.- Illustration of Determining Doublet Strength at Center Point of 
Panel Edge and at Panel Corner by Weighted Least Square Fit 
With Neighboring Center Panel Values For Interior Panels. 

238 



M2 p3 M3 
. p4 

x3 x4 

Figure lOO.- Illustration of Parameters and Points on 
a Network Edge Used in Interpolation 
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Figure lOl.-Illustration of Least Squares Fit Applied to F&ding Corner And 
Midpoint Edge Values of The Doublet Strength For Panels Near 

Net work Edges 
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Figure 102.-Subpanels of Triangular Panel 
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